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Abstract

The advantage of Grassmann algebra when translating basic geometric operations 
(meet and join) of incidence geometry into algebraic expressions, which can easily be 
translated into a programme code, is presented in this paper. The procedures for static 
equivalence and finding equilibrating forces to a given force system can be carried 
out by methods of graphic statics, i.e. by using only basic geometrical operations of 
incidence geometry. Therefore, making use of the possibility of translating procedures 
of graphic statics into a program code, and using the power of today’s computer-aided 
design (CAD) tools, a computer program has been developed, and some examples of 
the mentioned procedures are provided.

Key words:  Grassmann algebra, Plücker line coordinates, 3D graphic statics, static equivalence, 
equilibrating forces

Grassmannova algebra i grafostatika

Sažetak

U radu su prikazane pogodnosti primjene Grassmannove algebre u prevođenju 
geometrijskih operacija incidencije (presjeka i unije) u algebarske izraze koje je potom 
lako prevesti u programski kod. Nalaženje statički ekvivalentnih ili uravnotežujućih 
djelovanja može se provesti postupcima grafostatike, to jest samo s pomoću osnovnih 
geometrijskih operacija incidencije. Stoga je primjenom mogućnosti prevođenja 
postupaka grafostatike u programski kod, uz pomoć suvremenih alata za računalom 
podržano oblikovanje (CAD), razvijen računalni program te je prikazano nekoliko 
primjera spomenutih postupaka.

Ključne riječi:  Grassmannova algebra, Plückerove koordinate pravaca, prostorna grafostatika, 
statička ekvivalencija, ravnoteža
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1. Introduction

Methods of graphic statics are used for solving problems in statics, for the evaluation 
of equilibrium and for determination of internal forces as well as the forces in 
supports of structural systems, by applying geometrical operations only. They are 
based on the construction of two reciprocal diagrams, the form diagram which shows 
the geometry of the structure (location of internal nodes and supports, external 
loads and lengths of structural elements) and the force diagram where polygons of 
forces, composed of vectors, represent equilibrium of internal forces in structural 
elements, forces in supports and external loads. The relation between the two 
reciprocal diagrams allows simultaneous control over the shape of the structure and 
internal forces in structural elements, and an efficient geometry of the structure can 
thus be found at an early stage of structural design process.
Developed in the 19th century, methods of graphic statics were limited only to planar 
and simple spatial problems of statics. Owing to today’s advanced tools for computer-
aided design (CAD), it is now possible to develop and apply three-dimensional (3D) 
graphic statics methods, such as the 3D algebraic polyhedral graphic statics [1] and 
the 3D vector-based graphic statics [2], both based on ideas from the 19th century.
In the paper examples of some spatial problems of statics, such as static equivalence 
and static equilibrium, will be described and they will be carried out using geometrical 
procedures only. Geometric operations of these procedures can easily be expressed 
algebraically using Grassmann algebra. To visualize examples in a CAD software 
(in our case Rhinoceros [3]), the algebraic expressions should be converted into a 
programme code. Since a large number of plugins are available for CAD tools, some 
of them intended for writing programme codes, complex geometrical procedure can 
be visualised based on rigorous mathematical expressions.
In most cases, when a system of external forces is acting on a body, it is easier to 
evaluate global equilibrium of structural system and to determine reactive forces 
in supports, if the given force system is replaced by a simpler, more convenient and 
statically equivalent force system. Two systems of forces are statically equivalent 
if their contribution to the conditions of static equilibrium is the same. Generally, 
a system of forces in space cannot be replaced by a single force, but rather by a 
resultant force and a resultant force couple (the case which will not be discussed in 
this paper) or by two skew forces. For the latter case, examples of replacing single 
force or system of two forces with a force acting at a given point, and a force acting 
in a given plane, will be described in the paper.
Reversion of orientation of the forces obtained by replacing a given force system with 
some other force system gives equilibrating forces to the given system. In this way, 
it is possible to evaluate global equilibrium of a structural system and to determine 
reactive forces in supports. This will be shown and described by an example of 
equilibrium finding of a spatial node and by an example of equilibrating a given two-
force system with forces acting along six given lines in a special position.
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2. Grassmann geometrical algebra

Hermann Grassmann’s great contribution to mathematics and mechanics has been his 
concept of coordinatization of higher dimensional subsets (subspaces) of geometrical 
sets, [4]. Here we will explain in detail his construction and its application to line 
geometry due to Plücker.
We start with a vector space of n dimensions V and its subspace L, a subset which is 
also a vector space of dimension k, for some 0 ≤ k ≤ n. To say that the dimension of V 
is n means that we can take n, and not less than n, elements of V, say n1,··· nn, such that 
all other elements of V can be uniquely described as a linear combination of these 
vectors. Subset, {n1,···, nn} with this property is called a basis for the vector space and 
for every w ∈ V there are unique numbers λ1,···, λn such that w1 = λ1n1 +···+ λnnn. 
The uniqueness property corresponds to linear independence of the basis vectors. 
We will continue our considerations for the special case of a four-dimensional vector 
space V = 4, but the same construction is valid for any vector space. We will consider 
the canonical basis for 4, a set

{e0, e1, e2, e3} (1)

of unit, mutually orthogonal vectors whose directions coincide with the coordinate 
axes of the usual Cartesian coordinate system of 4. Then we have coordinates  
e0 = (1,0,0,0) etc. If we have a point x ∈ 4 with coordinates x = (x0, x1, x2, x3), then  
x = x0e0 + x1e1 + x2e2 + x3e3 is its canonical basis representation.
Grassmann defined an operation, which he named outer product, that takes two 
elements of the vector space and attaches to this pair one element of another, higher 
dimensional, vector space, the adjective “outer” thus expressing that the result of the 
operation is not contained in the same vector space as the operands.
He then prescribes two properties that this operation must satisfy so that the 
resulting vector space is uniquely determined. We present his construction for 4 and  
k = 2 (k can be any number between 0 and n = 4, both included). Let ei be the elements 
of canonical basis from Eq. (1). We denote the outer product of two elements ei and 
ej by

ei ∧ ej (2)

and we demand that this operation is anti-commutative, which means that

ei ∧ ej = -ei ∧ ej (3)

for all numbers i and j between 0 and 3. A direct consequence of this property is that 
ei ∧ ej = 0 for all indices i, so that from the four elements of the canonical basis (1) 
of 4, we can, using the outer product, get six linearly independent elements, and we 
consider the following linearly independent elements
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e0∧e1, e0∧e2, e0∧e3, e2∧e3, e3∧e1, e1∧e2 (4)

Furthermore, we demand that the outer product must be linear in both arguments, 
bilinear, i.e. the equalities

x ∧ (ay+bz) = ax ∧ y + x ∧ bz  and  (ay+bz) ∧ z = ax ∧ z + bz ∧ z (5)

hold for all elements x, y and z of 4 and all real numbers a and b.
In this way, we have uniquely determined a vector space, which we denote  
Λ2 4, whose basis is made of the six elements from Eq. (4), and for all elements  
x = x0e0+x1e1+x2e2+x3e3 and y = y0e0+y1e1+y2e2+y3e3 in 4 we have

   (6)

 

where I = {(0,1),(0,2),(2,3),(3,1),(1,2)}. 
The procedure in the general case of-dimensional subspace is the same; we make, on 
the basis of V, outer products of k elements, ei1∧···∧eik and apply anti-commutativity 
and bilinearity. The resulting vector space ΛkV is -dimensional.
The vector space that is a direct sum of the vector spaces ΛkV for 0 ≤ k ≤ n is called 
Grassmann algebra. It is an algebra in the mathematical sense of an algebraic structure, 
a vector space together with the bilinear operation defined for its elements, which 
in the case of Grassmann algebra are subspaces of the initial vector space. For a 
broad explanation of the outer product and its definition the reader is referred to 
Grassmann’s or Whiteheads’s work [4],[5].

2.1. Coordinatization of linear subspaces

We will now show the connection between the vector space ΛkV and k-dimensional 
subspaces of V, again using the example Λ2 4. 
Elements in Λ2 4 have the form λ1e0∧e1+ λ2e0∧e2+ λ3e0∧e3 + λ4e2∧e3+ λ5e3∧e1+ λ6e1∧e2, 
with real λi and if we tried to represent them in the form (6) as an outer product of 
two vectors from 4, we would have to solve a system of 6 non-linear equations in 
8 unknowns, which does not always have solutions. Those elements of Λ2 4 that do 
have the form as in (6) are called simple elements. 
If we take a two-dimensional subspace of 4 generated by two vectors x and y, then 
we can map it to the one-dimensional subspace of Λ2 4 generated by x ∧ y. Reversely, 
if we have a simple element of Λ2 4 as in (6), we can attach to it the two-dimensional 
subspace of 4 generated by x and y. In this way, we have a bijection between two-
dimensional subspaces of 4 and one-dimensional subspaces of Λ2 4 generated by 
simple elements.
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In the general case, if we look at a -dimensional subspace, we again have the bijection

a = a1 ... ak  ΛkV        L(a) = [a1, ..., ak] (7)

where L(a) is a k-dimensional subspace of V generated by elements a1,···, ak  V. The 
coefficients of a in the canonical basis of ΛkV are called Grassmann coordinates of L(a). 

3. Grassmann’s coordinatization in extended Euclidean space

In this Section, previous constructions are applied to the set of lines in the three-
dimensional Euclidean space. We start with a description of the space we will work 
in, the extended Euclidean space.

3.1. Extended Euclidean space

The usual three-dimensional Euclidean space, which we will denote by E3, can be 
extended by adding elements at infinity, which we will call ideal elements, so that this 
extension becomes a projective space. We have described this construction in detail 
in [6] and here we will shortly repeat it.
To the Euclidean space, whose basic elements are points, lines and planes, we add one 
plane at infinity, ideal plane, which contains lines at infinity and points at infinity, ideal 
lines and ideal points, so that every other plane in space contains exactly one ideal line. 
It is extended with this one line, which is then its intersection with all other planes 
parallel to it, and every line in space contains, or is extended by, one ideal point so 
that this point is its intersection with all other lines parallel to it. This kind of space is 
called the extended Euclidean space, and we will denote it with P3( ). This space has 
the structure of projective space, [7].
In the projective space, on the set of basic elements – points, lines and planes – we 
have the incidence relation. This space can be axiomatically described with axioms of 
incidence if we wish to employ synthetic geometry, or we can explore it analytically, 
which we will, using homogenous coordinates. 
The incidence relation has a threefold interpretation, involving three aspects. The first 
one is the relation itself in a passive sense, to be incident meaning to lie in or to pass 
through, noting the relation between elements of the space. The other two are active 
and are used to define an element with other lower or higher dimensional elements. 
First is the meet or intersection, for instance two lines meet or intersect at a point, 
and the other is the join or span, for instance the span of two points is a line, or the 
line is given as a join of two points. 
There is a close connection between vector spaces and projective spaces. In our case, 
the projective space P3( ) is related to the vector space 4: the function that maps 
a one-dimensional subspace of 4, generated by one vector, to a point in P3( ) is bijection. 
In Section 3.2 we will see that this is the definition of homogenous coordinates of 
points in P3( ). This function also maps the two-dimensional subspaces of 4, those 
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generated or spanned by two vectors, to the set of lines of P3( ) and, analogously, 
the three-dimensional subspaces become planes in P3( ). In the case of 4 the 
dimension of the vector space is four, which means that the basis consists of four 
linearly independent vectors, and the dimension of the projective space, its projective 
dimension, is three – it is always the vector space dimension -1. The incidence relation 
corresponds to the inclusion operation, as is clear from the names of the operations 
meet or intersection being precise the intersection of subspaces in algebraic sense 
and the same is true for the join, the span which is the union operation on the set 
of subspaces. For instance, a point is contained in, lies in, is incident with a line of  
P3( ) if and only if its corresponding one-dimensional subspace of 4 is contained in, 
is a subspace of the two-dimensional subspace corresponding to that particular line.
Further on, the fundamental notion of duality, crucial in projective geometry, can also 
be found in linear algebra of vector spaces.
The duality, in the three-dimensional projective space, states that if we replace the 
notions of point and plane and all the derived notions correspondingly in any true 
statement of projective geometry, the new statement will also be true. The lines and 
related notions in this duality remain unchanged.
The duality can be seen in vector spaces as the isomorphism between the space itself 
and its dual space, which will not be discussed here, but the reader is referred to [7].

3.2. Homogeneous coordinates of points and planes 

The points of the extended Euclidean space are either the points of the Euclidean 
space E3 or the ideal points, and the entire E3 is canonically embedded in P3( ) as 
the complement of the ideal plane. It is also embedded in the vector space 4 or, 
equivalently, we can think of it as an image of projection of R4 into three dimensions, 
which can be done in an infinite number of ways. In practice, we choose one of the 
four coordinates of a point in 4 and disregard it, being then left with the three 
coordinates, i.e. we get as the image the space E3. To obtain the space P3( ), we 
again choose one out of the four coordinates and we say that it is equal to one or 
zero, denoting in this manner whether the point is ideal (the coordinate is zero) or 
the point belongs to E3 (the coordinate is one). Noting the isomorphism between 
the vector space 4 and P3( ), the described operation must have the homogeneity 
property, i.e. it must have the same result on the one-dimensional subspace of 4 
spanned by the vector.
In the usual Cartesian coordinate system of 4, with four mutually orthogonal axes, 
a vector x = (xo, x1, x2, x3) is given by its coordinates x0, x1, x2, x3 which represent 
projections of this vector to the four axes. We denote the one-dimensional subspace, 
the span of this vector, with <x> and it is a line of 4 passing through the origin point.
Then the homogenous coordinates of the corresponding point in P3( ) are denoted 
by (x0:x1:x2:x3) and the homogeneity property states that

λ (x0:x1:x2:x3) = (λx0:λx1:λx2:λx3) = (x0:x1:x2:x3), λ  0, λ  R (8)

must be true for every vector in 4.
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Having in mind the first paragraph, we usually choose the first variable x0, and thus 
the set of ideal points becomes the plane of P3( ) having the equation x0 = 0, and 
the Euclidean space E3 is isomorphic to its complement, a set given with the equation 
x0≠0 and is the image of the projection

 (9)

from that set.
And, vice versa, starting with a point in the Euclidean space E3 given by its usual 
Cartesian coordinates (x1, x2, x3), its homogenous coordinates as a point in P3( ) are 
(1 : x1 : x2 : x3).
The set of planes of P3( ), consisting of the set of planes of E3 together with the ideal 
plane, is also the set of hyperplanes of P3( ), i.e. subspaces of co-dimension one. This 
set is, by the duality principle, bijective, moreover isomorphic to the set of points and 
can also be coordinatized by homogenous coordinates relating not to the projections 
of the plane on coordinate axes, but rather dually to the intersections of the plane 
with the coordinate axes.
Thus, the homogenous coordinates of a plane (α0 : α1 : α2 : α3) are interpreted in E3 as 
the plane passing through the points (α1, 0, 0), (0, α2, 0) and (0, 0, α3) its intersections 
with the coordinate axes, unless the first coordinate, in which case the plane contains 
the origin point. The ideal plane is given by (α0 : 0 : 0 : 0) with α0 ≠ 0. 

3.3. Interpreting Grassmann algebra in P3(ℝ)

We now relate to Section 2, connecting the projective space P3( ) via the vector 
space R4 to Grassmann algebra, to eventually obtain coordinates on the set of lines. 
In order to do so, we relate the incidence relation, whose interpretation as the 
inclusion operation on the set of linear subspaces of the vector space 4 is described 
in Section 3.1 above, to the concept of the outer product, the bilinear operation of 
Grassmann algebra. Now, the two active aspects of the incidence relation relate to 
the outer product as follows. Firstly, the join operation, which defines elements of  
P3( ) using lower dimensional elements, is correspondent, in Grassmann’s terminology, 
to the progressive product. For instance, and we will go into a greater detail in this 
example, a line, being a one-dimensional subset of P3( ), already described as a span 
of two points in the sense of 4, is geometrically defined as passing through these two 
points, which, in synthetic approach to projective geometry, is an axiom that the two 
points define this one unique line. The line can then in Grassmann geometrical algebra 
be defined as outer product of two points. The adjective progressive emphasizes 
that this definition starts with lower and results in higher dimensional elements, or 
subspaces.
Analogously, the meet operation: given the duality principle, a line, being a one-
dimensional subset of P3( ), an intersection of two hyperplanes in the sense of 4 
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is geometrically defined as intersecting line of these two planes, which, in synthetic 
approach to projective geometry, is dual to the axiom mentioned in the previous 
paragraph. The line can then in Grassmann geometrical algebra be defined as outer 
product of two planes. This kind of outer product, where we start with higher and 
end up with lower dimensional objects is, in Grassmann’s terminology, noted as 
regressive product.

3.4. Homogeneous coordinates of lines 

We continue analytically to describe the Plücker coordinates of a line, as the 
progressive product, join or span of two points. First, it can be noted that this is 
precisely what we have described with equation (6) concluding that the lines are 
precisely the simple elements of Λ2R4 and can furthermore be described with six 
coordinates. Following the notation of (6), we denote

lij = xiyj - xjyi (10)

For (i, j) ∈ {(0,1), (0,2), (0,3), (2,3), (3,1), (1,2)} and L = (l01, l02, l03, l23, l31, l12) ∈ Λ2R4 

are Grassmann coordinates of the line interpreted as the progressive product of two 
points L = x ∧ y. 
The “being simple” condition, equivalent to solvability of a homogenous system of 
equation, gives us one relation among the six coordinates. According to Plücker, this 
relation is

l01l23 + l02l31 + l03l12 = 0 (11)

it is called the Plücker relation and it separates from the set of all six-tuples those ones 
that correspond to lines in the described application of the extended Euclidean plane 
P3( ).
Given the fact that this definition of coordinates of a line must be invariant to 
choosing a pair of generators of the span which is the line L as the join of two points, 
the coordinates must be homogeneous. Therefore, the Plücker coordinates of a line are

(l01: l02: l03: l23: l31: l12) = (l, ) (12)

where l = (l01, l02, l03) and  = (l23, l31, l12) and the Plücker relation now reads l ·  = 0. 

The geometrical interpretation in the sense of Euclidean space E3 as the image of the 
projection from P3( ) as described earlier was Plücker’s starting point in [8]. This 
paper is the origin of Line Geometry as a mathematical discipline, regarding the lines 
as the basic rather than derived elements, as is usually the case in other geometries. 
He uses projections of a line in space to two orthogonal planes defined by two 
coordinate axes, then regards the standard analytical geometry equations of these 
now planar lines with two standard parameters, one being the slope or direction 
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and the other the intercept on the coordinate axis or the position regarding the 
direction. Thus, he arrives to the four coordinates of a line. For him, this kind of 
approach comes from regarding lines as rays of light.
Another geometrical interpretation can be obtained with respect to the vector space 
structure of E3 where l from (12) is the vector connecting points x and y and further, 
the coordinates of the vector , orthogonal to l, are precisely scalar projections of l 
to the coordinate axes after being positioned so that the starting point is the point x. 
Now we look at the dual conception of a line. Let a line be given as the meet, 
intersection of two planes with homogenous coordinates α = (α0 : α1 : α2 : α3) and  
β = ( β0 : β1 : β2 : β3) then as in (6) we can 
define their outer product u∧v and denote the vector

(l*
01, l*

02, l*
03, l*

23, l*
31, l*

12) = α∧β (13)

We must state here that this is not the regressive product of the planes as three-
dimensional subspaces but again the progressive product of one-dimensional subspaces 
of the dual of the projective space P3(R), and here the basis vectors corresponding to 
basis vectors appearing in (6) are not basis vectors we would have in the regressive 
product (they would be derived as the outer product of three elements). However, 
we have the same coefficients since the duality property of projective spaces reflects 
itself as the Hodge property of Grassmann algebra.
The coordinates (l*

01: l*
02: l*

03: l*
23: l*

31: l*
12) are called the dual Plücker coordinates 

or axial coordinates of a line, and the following connection between the two sets of 
coordinates can be established:

(l*
01: l*

02: l*
03: l*

23: l*
31: l*

12) = (l23: l31: l12: l01: l02: l03) = ( , l) (14)

3.5. Force coordinates

Since a force acting at a point in the space is lying on a line and due to the principle 
of transmissibility, we can use the line Plücker coordinates to derive the coordinates 
for a force. This is done by the further remark on the geometrical interpretation of 
the coordinates; as stated in the previous Section, the vector  is orthogonal to the 
vector l and can be interpreted as the moment vector about the origin point of the 
coordinate system of a force F lying on the line L = (l, ). 
Furthermore, the ideal point of this line is the point (0:l01: l02: l03). In other words, the 
vector l represents the direction of the line, and if x = (1 : x1: x2 : x3) is any other (non-
ideal) point on the line, then we have  = x· l, with x = (x1, x2, x3) being the Cartesian 
coordinates of the point in E3. 
Therefore, a force F can be given by its coordinates F = f,  with f being force vector 
and  its moment vector about the origin point of the coordinate system. These 
coordinates are not homogenous since the quantity ||f|| represents its intensity. 
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4. Programming geometrical constructions 

For performance and visualisation of the examples of static equivalence and the 
examples of equilibrium finding we will present in Section 5, we have developed 
a computer program based on algebraic translations of incidence operations using 
CAD tool Rhinoceros [3]. Steps of the graphical procedures are carried out using 
basic operations of incidence geometry, which can easily be expressed in algebraic 
form using Grassmann algebra, thus enabling their conversion into a programme 
code.

The programme code is written in GhPython [9] (Python interpreter and plug-
in for Grasshopper [10]), and the results are visualized in Rhinoceros (Figure 1). 
All procedures of static equivalence and geometrical constructions are graphically 
performed in the form diagram (left side of Figures 1-4) and are then followed by 
force polygons in the force diagram (right side of Figures 1-4).

Figure 1.  Program developed in Rhinoceros and Grasshopper, e.g. for replacing 
single force with two forces, one of which is acting at a given point and 
the other one lies in a given plane, which does not contain the point

4.1. Algebraic form of geometric incidence relations

Here we will present some formulas in homogeneous coordinates describing 
incidence relations and their usage in coding geometrical constructions.
We start with the already mentioned join of two points, a line, and the dual 
construction of a line as meet of two planes (Figure 2). Since these operations are 
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described above in Section 3.4 as the outer product in the definition of Plücker and 
dual Plücker coordinates for lines, we present the code in Python for the line in 
Figure 2, on the right side.

In Table 1. we present the formulas in homogenous coordinates for the following 
incidence relations: a point incident with (lying in) a plane, a point incident with (lying 
on) a line, a line as join of two points, a line as meet of two planes, a point as meet 
of two intersecting lines, a plane as join of two intersecting lines, a plane as join of 
a point and non-incident line, and a point as meet of a line and non-incident plane. 
(Their Python codes are show in Figures 2 and 3.) These formulas can easily be 
verified by direct computation using vector calculus. We will write the homogenous 
coordinates of points and planes as

  and     (15)

thus emphasizing standard Cartesian coordinates of points in E3, i.e. normal vectors 
of planes. Homogenous coordinates of lines are as given in [12].

Figure 2. Python codes: a) a line as join of two points, b) a line as meet of two planes
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Figure 3.  Python codes: a) a plane as join of two intersecting lines, b) a point as meet 
of two intersecting lines, c) a plane as join of a point and non-incident line, 
and d) a point as meet of a line and non-incident plane
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Table 1. Computing with homogenous coordinates

5. Examples 

The procedures for replacing a given force system with some other force system, 
and procedures for finding equilibrating forces to the given force system described 
in the paper, are carried out using geometric constructions that can be considered 
as a partial three-dimensional extension of the funicular polygon construction. The 
extension of funicular polygon is based on two principles, [11, 6]): 1) a single force 
can be resolved into two force components along two given lines if and only if its 
line of action and two given lines are concurrent and coplanar, and 2) generally, when 
constructing funicular polygon using the first condition, each of two given forces is 
resolved into two components in such a way that one component of the first force 
and one component of the second force lie on the same line, they are opposite in 
sense and equal in magnitude, i.e. they cancel each other.

5.1.  ℝeplacing single force with a force acting at a given point and a force lying in 
a given plane

The first of the two above mentioned conditions for funicular polygon construction 
can be used to replace single force into a sum of two forces, first one acting at given 
point and second one lying in a given plane, which does not contain the given point, 
[5]. In this example, we will also show translations of geometric operations into 
Grassmann algebra expressions.

 and
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Figure 4.  Replacing single force with two forces, one of which is acting at a given 
point while the second one is lying in a given plane, which does not 
contain the given point

A plane σ is a join of the given point A and the line of action s of the given force S 
(in algebraic terms: join σ = a ∧ s (Figure 4.c). The first component of the force S acts 
along the line r, which is the intersection line of the plane σ and a given plane b (meet 
r = σ ∧ β). Second component acts along the connecting line p of the point A and 
the intersection point P of the line s and the plane β (meet and then join: P = s ∧ β, 
p = A ∧ P (Figure 4.d). Previous steps were performed in the form diagram while the 
following ones will be performed in the force diagram. From arbitrarily chosen point 
O vector s of the force S is drawn; head of s is the point B (B = O + s). Lines r’ and p’ 
are drawn through O and B parallel to the lines r and p (r’ = O∧r, p’ = B∧p, where r 
and p are some vectors on lines r and p). Lines r’ and p’ intersect in point C (C = r’∧p’) 
(Figure 4.e). Vectors s1 and s2 of force components S1 and S2 on lines r and p are s1 = 
C – O and s2 = B – C.
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5.2.  ℝeplacing two forces with a force acting at a given point and a force lying in a 
given plane

Theorem that “any system of forces can always be represented by two forces one of 
which lies in a given plane, and the other passes through a given point not lying in the 
plane” was also proved by Whitehead [5].

The first procedure for replacing two forces with a force acting at a given point and 
a force lying in a given plane is to resolve each of two given forces S1 and S2 into 
a component acting at the given point A and a component lying in a given plane β. 
The resultant R1 of the two components acts at the point A and the resultant R2 
of the other two components lies in the plane β. Two obtained forces are statically 
equivalent to the given forces S1 and S2.

Another procedure, similar to the funicular polygon construction, is as follows. S1 and 
S2 are given forces acting on lines s1 and s2 (Figure 5.a). The plane σ1 is defined by the 
given point A and the line s1, and the plane σ2 by the line s2 and a point A1 arbitrarily 
chosen on the line s1. The line s12 is the intersection of the planes σ1 and σ2. (The line 
s12 can also be considered as a connecting line between two arbitrarily chosen points, 
A1 on line s1 and A2 on line s2.) The component S12 of the force S1 and the component 
S21 of the force S2 act along the same line s12 and cancel each other. The second 
component S11 of the force S1 acts along the line p1 connecting the points A and A1. 
Now the force S2 can be resolved in the plane σ2. In that way given forces S1 and S2 
are replaced with the forces S11 and S22 (Figure 5.b).

The point B is the intersection of the line of action of the force S22, line s22, and the 
given plane β. Span (or join) of two points A and B is the line p2 (Figure 5.c). The plane 
σ22 is defined as a join of the lines s22 and p2. Planes σ22 and b intersect in the line p3. 
Now, we resolve the force S22 into two components S22,1 and S22,2 along the lines p2 
and p3 (Figure 5.d), and the force S11 into components S11,1 and S11,2 = −S22,1 (Figure 
5.e). The remaining components S11,1 = S1, a force which acts at the given point A, and 
S22,2 = S2, a force which lies in the given plane b (Figure 5.f), represent a force system 
equivalent to the system of forces S1 and S2. Reversion of the obtained forces R1 and 
S2 gives equilibrating forces to the given two-force system.
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Figure 5.  Replacing two-force system with a force acting at the given point and a 
force acting in the given plane, [11]

5.3. Equilibrium of a spatial node

Here, we describe an example of finding equilibrium of a given spatial node P4 
supported by three bars P1P4 (line s1), P2P4 (line s2) and P3P4 (line s3). The bars are 
connected to the ground with spherical supports P1, P2 and P3. Also, the node P4 is a 
spherical node at which a given force S acts along its line of action s (Figure 6.a). The 
procedure for equilibrium finding of a spatial node is similar to the procedure for 
replacing a single force with three forces acting along bars P1P4, P2P4 and P3P4, which 
was described by Jasienski et al. [12]. The procedure was also described by Föppl [13] 
using descriptive geometry and can be found in the textbook by Simović [14].
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Figure 6. Procedure for equilibrium finding of a spatial node P4

In the form diagram (Figure 6.b, on the left side), we define plane σ1 containing the 
line of action s and the line s2, and plane σ2 containing the lines s1 and s3. Line d is the 
intersection line of the planes σ1 and σ2. Now all the lines in the form diagram are 
known, and thus the procedure is carried out in the force diagram (Figure 6.b, on the 
right side). First we place the line s2’ parallel to the line s2 at the tail of the force S and, 
at the head of the force S, we place the line d’ parallel to the line d. Since the force  
D = S+S1 is the sum of the forces S and S1, and since all of them lie in the plane parallel 
to the plane σ1, the intersection of two lines gives the point which defines magnitudes 
of the forces D and S1. The component S1 acts along the line s1, and the force D acts 
along the line d’. In that way S1 and D are determined. Now, the resultant force of the 
forces S2 and S3 must be in equilibrium with the force D. It is well known that two 
forces are in equilibrium if they act along the same line, they are opposite in sense 
and equal in magnitude. Thus, the force D and the force −D = S2+S3 act along the line 
d’ and cancel each other. Again, in the force diagram, we place a line s2’ at the tail of 
the force −D parallel to the line s2 and at the head of the force −D we place a line s3’ 
parallel to the line s3. Since all the forces −D, S2 and S3 lie in the same plane parallel 
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to the plane σ2, the intersection point of the lines s2’ and s3’ determines forces S2 and 
S3. In this way, forces S, S1, S2 and S3 form a close polygon in the force diagram, i.e. the 
spatial node P4 is in equilibrium (Figure 6.c).

5.4. Equilibrating two-force system with forces on edges of a given tetrahedron

Forces S1 and S2 are two given forces. The force S1 acts at the given point A and 
the force S2 lies in the given plane β (Figure 7.a). Three lines s11, s12 and s13 are given 
through the same point A, and lines s21, s22 and s23 are lying in the plane β. In our case, 
the six lines are given in a special position, that is they are edges of a tetrahedron. 
Three equilibrating forces will be determined for each of the given forces. 

Using the procedure for finding equilibrium of a spatial node described in the previous 
subsection, three equilibrating forces S11, S12 and S13, acting along the given lines s11, 
s12 and s13 at the same point A, which is also a vertex of the tetrahedron, will be 
determined for the force S1 (Figure 7.b).
For the force S2, three forces act in the same plane b along the given lines s21, s22 and 
s23. In this special position, points T1, T2 and T3 are vertices of the given tetrahedron 
and also intersection points of the lines s11, s12 and s13 with the plane β in general 
case. Since all lines, along which the three equilibrating forces S21, S22 and S23 to the 

Figure 7.  Procedure for finding equilibrating forces to the given two-force system 
along six given lines
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force S2 act, are known, they can be determined in the force diagram. The line d1, 
connecting the intersection point T2 of the lines of action of the forces S22 and S23 and 
the intersection point T of the lines of action of the forces S2 and S21, represents the 
Culmann’s line (Figure 7.c). Using well-known methods of planar (2D) graphic statics, 
we obtain equilibrating forces S21, S22 and S23

6. Conclusion

The use of Grassmann algebra when dealing with translations of geometric operations 
into algebraic expressions is presented in detail in this paper. 
The extended Euclidean space is defined as a projective space and the coordinatization 
of its subspaces, namely points, lines and planes, is defined in accordance with 
Grassmann’s ideas, in order to present algebraic expressions of basic geometrical 
operations (join and meet) of incidence geometry. The coordinatization of the set of 
forces associated with Plücker line coordinates is also defined.
Since modern methods of graphic statics are three-dimensional, based on rigorous 
mathematical definitions of geometric constructions, and thus available only through 
today’s advanced CAD tools, we have described how Grassmann algebra can be used 
in programming by converting algebraic expressions into the programme code. In that 
way, the procedures can be parametrically defined and visualized using Rhinoceros.
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