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ABSTRACT

This article provides a simple pictorial introduction to uni-
versal hyperbolic geometry. We explain how to under-
stand the subject using only elementary projective geom-
etry, augmented by a distinguished circle. This provides a
completely algebraic framework for hyperbolic geometry,
valid over the rational numbers (and indeed any field not
of characteristic two), and gives us many new and beauti-
ful theorems. These results are accurately illustrated with
colour diagrams, and the reader is invited to check them
with ruler constructions and measurements.
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Univerzalna hiperbolǐcka geometrija II:

slikovni pregled

SAŽETAK

Članak pruža jednostavan slikovni uvod u univerzalnu
hiperboličku geometriju. Objašnjava se kako razumjeti
sadržaj koristeći samo osnovnu projektivnu geometriju,
proširenu jednom istaknutom kružnicom. Na taj se način
dobiva potpuno algebarski okvir za hiperboličku geome-
triju, koji vrijedi nad poljem racionalnih brojeva (i u biti
nad bilo kojim poljem karakteristike različite od 2) i daje
mnoge nove lijepe teoreme. Ovi su rezultati prikazani
crtežima u boji, a čitatelj je pozvan provjeriti ih konstruk-
tivno i računski.

Ključne riječi: hiperbolička geometrija, projektivna geo-
metrija, racionalna geometrija, kvadranca, širina, kvadrea

1 Introduction

This paper introduceshyperbolic geometryusing only ele-
mentary mathematics, without any analysis, and in particu-
lar without transcendental functions. Classical hyperbolic
geometry, (see for example [6], [7], [8], [9], [10], [11],
[15], [17], [23]), is usually an advanced topic studied in
the senior years of a university mathematics program, of-
ten built up from a foundation of differential geometry. In
recent years, a new, simpler and completely algebraic un-
derstanding of this subject has emerged, building on the
ideas ofrational trigonometry([18] and [19]). This ap-
proach is calleduniversal hyperbolic geometry, because it
extends the theory to more general settings, namely to ar-
bitrary fields (usually characteristic not two), and because
it generalizes to other quadratic forms (see [21]).

The basic reference isUniversal Hyperbolic Geometry I:
Trigonometry([22]), which contains accurate definitions,
many formulas and complete proofs, but no diagrams. This
paper complements that one, providing a pictorial intro-
duction to the subject with a minimum of formulas and no
proofs, essentially relying only on planar projective geom-

etry. The reader is encouraged to verify theorems by mak-
ing explicit constructions and measurements; aside from a
single base (null) circle, with only a ruler one can check
most of the assertions of this paper in special cases. Alter-
natively a modern geometry program such as The Geome-
ter’s Sketchpad, C.A.R., Cabri, GeoAlgebra or Cinderella
illustrates the subject with a little effort.

Our approach extends the classicalCayley Beltrami Klein,
or projective, model of hyperbolic geometry, whose un-
derlying space is the interior of a disk, with lines being
straight line segments. In our formulation we consider also
the boundary of the disk, which we call thenull circle, also
points outside the disk, and also points at infinity. The lines
are now complete lines in the sense of projective geome-
try, not segments, and include alsonull lineswhich are tan-
gent to the null circle, and lines which do not meet the null
circle, including the line at infinity. This orientation is fa-
miliar to classical geometers (see for example [2], [3], [4],
[5], [14]), but it is not well-known to students because of
the current dominance of the differential geometric point
of view. A novel aspect of this paper is that we introduce
our metrical concepts—quadrance, spreadandquadrea—
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purely in projective terms. It means that only high school
algebra suffices to set up the subject and make computa-
tions. The proofs however rely generally on computer cal-
culations involving polynomial or rational function identi-
ties; some may be found in ([22]), others will appear else-
where.

Many of the results are illustrated with two diagrams, one
illustrating the situation in the classical setting using inte-
rior points of the null circle, and another with more general
points. The fundamental metrical notions ofquadrancebe-
tween points andspreadbetween lines are undefined when
null points or null lines are involved, but most theorems
involving them apply equally to points and lines interior or
exterior of the null circle. The reader should be aware that
in more advanced work the distinction between these two
types of points and lines also becomes significant. Instead
of area of hyperbolic triangles, we work with a rational
analog calledquadrea.

With this algebraic approach we can develop geometry
over therational numbers—in my view, always the most
important field. The natural connections between geome-
try and number theory are then not suppressed, but enrich
both subjects. Later in the series we will also illustrate hy-
perbolic geometry overfinite fields,in the direction of [1]
and [16], wherecountingbecomes important.

2 The projective plane

Hyperbolic geometry may be visualized as the geometry of
the projective plane, augmented by a distinguished circlec
(in fact a more general conic may also be used). Since pro-
jective geometry is not these days as familiar as it was in
former times, we begin by reviewing some of the basic no-
tions. The starting point is the affine plane—familiar from
Euclidean geometry and Cartesian coordinate geometry—
containing the usual points[x,y] and (straight) lines with
equationsax+by= c. The affine plane is augmented by in-
troducing anew pointfor every family of parallel lines. In
this introductory section we useparallel in the usual sense
of Euclidean geometry, so that the lines with equations
a1x+ b1y = c1 and a2x+ b2y = c2 are parallel precisely
whena1b2−a2b1 = 0. Later on we will see that there is a
different, hyperbolic meaning of ‘parallel’ (which is differ-
ent from the usage in classical hyperbolic geometry!) The
new point, one for each family of parallel lines, is a ‘point
at infinity’. We also introduce onenew line, the ‘line at
infinity’, which passes through every point at infinity.

Algebraically the projective plane may be defined with-
out reference to the Euclidean plane, with points specified
by homogeneous coordinates, or proportions, of the form
[x : y : z]. Points[x : y : 1] correspond to the affine plane,
and points at infinity are of the form[x : y : 0]. The lines

also are specified by homogeneous coordinates, now of the
form (a : b : c), with the pairing between the point[x : y : z]
and the line(a : b : c) given by

ax+by−cz= 0. (1)

This particular relation is the characterizing equation for
hyperbolic geometry; for spherical/elliptic geometry a dif-
ferent convention between points and lines is used, where
the line 〈a : b : c〉 passes through the point[x : y : z] pre-
cisely whenax+ by+ cz = 0. Note that we use round
brackets for lines in hyperbolic geometry.

We will visualize the projective plane as an extension of the
affine plane, with the usual property that any two distinct
points a and b determine exactly one line which passes
through them both, called thejoin of a andb, and denoted
by ab, and with thenewproperty that any two linesL and
M determine exactly one point which lies on them both,
called themeetof L andM, and denoted byLM.

In projective geometry, the notion of parallel lines disap-
pears, since nowany two lines meet. Familiar measure-
ments, such as distance and angle, are also absent. It is
really thegeometry of the straightedge.

Despite its historical importance, intrinsic beauty and sim-
plicity, projective geometry is these days sadly neglected
in the school and university curriculum. Perhaps the wider
realization that it actually underpins hyperbolic geometry
will lead to a renaissance of the subject! Most readers will
know the two basic theorems in the subject, which are il-
lustrated in Figure 1.
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Figure 1: Theorems of Pappus and Desargues

Pappus’ theoremasserts that ifa1, a2 anda3 are collinear,
and b1,b2 and b3 are collinear, thenx1 ≡ (a2b3) (a3b2),
x2 ≡ (a3b1) (a1b3) and x3 ≡ (a1b2)(a2b1) are collinear.
Desargues’ theoremasserts that ifa1b1, a2b2 and a3b3

are concurrent, thenx1 ≡ (a2a3) (b2b3), x2 ≡ (a3a1) (b3b1)
andx3 ≡ (a1a2) (b1b2) are collinear. This is often stated in
the form that if two triangles are perspective from a point,
then they are also perspective from a line.

A further important notion concerns four collinear points
a,b,c andd on a lineL, in any order. Suppose we choose
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affine coordinates onL so that the coordinates ofa,b,c and
d are respectivelyx,y,z andw. Then thecross-ratio is de-
fined to be the extended number (possibly∞) given by the
ratio of ratios:

(a,b : c,d) ≡

(

a−c
b−c

)

/

(

a−d
b−d

)

.

This is independent of the choice of affine coordinates on
L.
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Figure 2: Projective invariance of cross-ratio:
(a,b : c,d) = (a1,b1 : c1,d1)

Moreover it is also projectively invariant, meaning that if
a1,b1,c1 andd1 are also collinear points on a lineL1 which
are perspective toa,b,c and d from some pointp, as in
Figure 2, then(a,b : c,d) = (a1,b1 : c1,d1).

The cross ratio is the most important invariant in projec-
tive geometry, and will be the basis ofquadrancebetween
points andspreadbetween lines, but we give also analytic
expressions for these quantities in homogeneous coordi-
nates; both arerational functionsof the inputs. The actual
values assumed by the cross-ratio depend ultimately on the
field over which our geometry is based, which is in princi-
ple quite arbitrary. To start it helps to restrict our attention
to the rational numbers, invariably the most natural, fa-
miliar and important field. So we will adopt a scientific
approach, identifying our sheet of paper with (part of) the
rational number plane.

Here are a few more basic definitions. Aside a1a2 =
{a1,a2} is a set of two points. Avertex L1L2 = {L1,L2} is
a set of two lines. AcoupleaL = {a,L} is a set consisting
of a pointa and a lineL. A triangle a1a2a3 = {a1,a2,a3}
is a set of three points which are not collinear. Atrilateral
L1L2L3 = {L1,L2,L3} is a set of three lines which are not
concurrent. Every trianglea1a2a3 has three sides, namely
a1a2, a2a3 and a1a3, and similarly any trilateralL1L2L3

has three vertices, namelyL1L2, L2L3 andL1L3.

Since the points of a triangle and the lines of a trilat-
eral are distinct, any trianglea1a2a3 determines anasso-
ciated trilateral L1L2L3 whereL1 ≡ a2a3, L2 ≡ a1a3 and
L3 ≡ a1a2. Conversely any trilateralL1L2L3 determines an
associated trianglea1a2a3 wherea1 ≡ L2L3, a2 ≡ L1L3

anda3 ≡ L1L2.

3 Duality via polarity

We are now ready to introduce thehyperbolic plane,
which is just the projective plane which we have just been
describing, augmented by a distinguished Euclidean cir-
cle c in this plane, called thenull circle, which appears in
our diagrams always in blue. The points lying onc have
a distinguished role, and are callednull points. The lines
tangent toc have a distinguished role, and are callednull
lines.

All other points and lines, including the points at infin-
ity and the line at infinity, are for the purposes of ele-
mentary universal hyperbolic geometry treated in a non-
preferential manner. In particular we donot restrict our
attention to onlyinterior points lying inside the circlec;
this is a big difference with classical hyperbolic geome-
try; exterior points lying outside the circle are equally im-
portant. Similarly we donot restrict our attention to only
interior lines which meetc in two points;exterior lines
which do not meetc are equally important. Note also that
these notions can be defined purely projectively once the
null circle c has been specified: interior points do not lie
on null lines, while exterior points do, and interior lines
pass through null points, while exterior lines do not.

For those who prefer to work with coordinates, we may
choose our circle to have homogeneous equationx2 +y2−
z2 = 0, or in the planez= 1 with coordinatesX ≡ x/zand
Y ≡ y/z, simply the unit circleX2 +Y2 = 1.

The presence of the distinguished null circlec has as its
main consequence acomplete dualitybetween points and
lines of the projective plane, in the sense that every point
a has associated to it a particular linea⊥ and conversely.
This duality is one of the ways in which universal hyper-
bolic geometry is very different from classical hyperbolic
geometry, and it arises from a standard construction in pro-
jective geometry involving the distinguished null circlec—
the notion ofpolarity. How polarity defines duality is cen-
tral to the subject.
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Figure 3: Duality and pole-polar pairs
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To define the polar of a pointa with respect to the null cir-
cle c, draw any two lines througha which each both pass
throughc in two distinct points, sayα,β andγ,δ respec-
tively; this is always possible. Now here is a beautiful fact
from projective geometry:if d andeare the other two diag-
onal points of the quadrilateralαβγδ, thenthe line de does
not depend on the two chosen lines through a, but only on
a itself.So we say thatde= A≡ a⊥ is thedual line of the
pointa, and converselya= A⊥ is thedual point of the line
A.

The picture is as in Figure 3, showing two different possi-
ble configurations for which the above prescriptions both
hold. In casea is external to the circle, it is also possible
to constructA ≡ a⊥ from the tangents to the null circlec
passing througha as in Figure 4, but this does not work for
an interior point such asb.

The construction shows that there is in fact a symmetry be-
tween the initial pointa and the diagonal pointsd ande,
so that if we started with the pointd, its dual would be the
line ae, and if we started with the pointe, its dual would
be the pointad. So this shows another fundamental fact:if
d lies on the dual a⊥ of the point a, then a lies on the dual
d⊥ of the point d.

So to invert the construction, given a lineA, choose two
pointsd and e on it, find the dual linesd⊥ ande⊥, and
definea≡ A⊥ = d⊥e⊥. It is at this point that we need the
projective plane, with its points and line at infinity, for if
d⊥ ande⊥ were Euclidean parallel, thend⊥e⊥ would be a
point at infinity. This situation occurs if we take our line
A to be a diameter of the null circlec, in the sense of Eu-
clidean geometry.

What happens when the pointa is null? In that case the
quadrilateral in the above construction degenerates, and the
polar linea⊥ is the null line tangent to the null circle ata.
So every null line is dual to the unique null point which
lies on it, as shown also in Figure 4.
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Figure 4:Null pointsα,β and their dual null lines

The duality between points and lines is surprisingly simple
to describe in terms of homogeneous coordinates. The pole
of the pointa ≡ [x : y : z] is just the linea⊥ ≡ (x : y : z),
so duality amounts to simply changing from one kind of

brackets to the other! This explains why we chose the hy-
perbolic form of the pairing (1).

In the previous section we saw that every trianglea1a2a3

has an associated trilateralL1L2L3 and conversely. Now
we see that there is another natural trilateral associated to
a1a2a3, namely thedual trilateral a⊥1 a⊥2 a⊥3 . Conversely to
any trilateralL1L2L3 there is associated thedual triangle
L⊥
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Figure 5:A trianglea1a2a3 and its dual trilateralA1A2A3

We also say that a coupleaL is dual precisely whena and
L are dual, and is otherwisenon-dual.

So to summarize:in (planar) universal hyperbolic geom-
etry, duality implies that points and lines are treated com-
pletely symmetrically. This is a significant departure both
from Euclidean geometry and from classical hyperbolic
geometry—in both of those theories, points and lines play
quite different roles. In universal hyperbolic geometry, the
above duality principle implies that every theorem can be
dualized to create a (possibly) new theorem. We will state
many theorems together with their duals, but to keep the
length of this paper reasonable we will not extend this to
all the theorems; the reader is encouraged to find state-
ments and draw pictures of the dual results in these other
cases.

4 Perpendicularity

The notions of perpendicular and parallel differ dramati-
cally between Euclidean and hyperbolic geometries. In the
affine geometry on which Euclidean geometry is based, the
notion ofparallel linesis fundamental, whileperpendicu-
lar lines are determined by a quadratic form. In hyper-
bolic geometry, the situation is reversed—perpendicularity
is more fundamental, and in fact parallelism is defined in
terms of it!

Another novel feature is that perpendicularity applies not
only to lines, butalso to points. This is a consequence of
the fundamental duality we have already established be-
tween points and lines.
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Figure 6: Perpendicular points and lines
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Figure 7: Altitude line N and altitude point n of a couple
aL

Perpendicularity in the hyperbolic setting is easy to intro-
duce once we have duality. We say that a pointb is per-
pendicular to a pointa precisely whenb lies on the dual
line a⊥ of a. This is equivalent toa lying on the dual line
b⊥ of b, so the relation is symmetric, and we write

a⊥ b.

Dually a lineL is perpendicular to a lineM precisely when
L passes through the dual pointM⊥ of M. This is equiva-
lent toM passing through the dual pointL⊥ of L, and we
write

L ⊥ M.

Figure 6 shows our pictorial conventions for perpendicu-
larity: the lineA is dual to the pointa, so pointsb,c and
d lying on A are perpendicular toa, and this is recorded
by a small (right) corner placed on the join of the perpen-
dicular points, and between them. Also the linesK,L and
M pass througha, so are perpendicular toA, and this is
recorded as usual by a small parallelogram at the meet of
the perpendicular lines.

Our first theorem records two basic facts that are obvious
from the definitions so far.

Theorem 1 (Altitude line and point) For any non-dual
coupleaL, there is a unique line N which passes through a
and is perpendicular to L, namely N≡ aL⊥, and there is a
unique point n which lies on L and is perpendicular to a,
namely n≡ a⊥L. Furthermore N and n are dual.

We call N the altitude line to L througha, andn the al-
titude point to a on L. In casea andL are dual, any line
througha is perpendicular toL, and any point lying onL
is perpendicular toa. While the former idea is familiar, the
latter is not. Figure 7 shows that if we restrict ourselves
to the inside of the null circle, altitude points are invisible,
so it is no surprise that the concept is missing from classi-
cal hyperbolic geometry. Remember that we are obliged to
respect the balance which duality provides us!

If a trianglea1a2a3 has saya1 dual toa2a3, then any line
througha1 will be perpendicular to the opposite linea2a3,

and we say the triangle isdual. A triangle isnon-dual
precisely when each of its points is not dual to the opposite
line. Similar definitions apply to trilaterals.

Somewhat surprisingly, the next result isnot truein classi-
cal hyperbolic geometry—a very conspicuous absence that
too often goes unmentioned in books on the subject! The
reason is that the orthocenter of a triangle of interior points
might well be an exterior point, as the left diagram in Fig-
ure 8 shows. The absence of a distinguished orthocenter
partially explains why the study of triangles in classical
hyperbolic geometry is relatively undeveloped. With uni-
versal hyperbolic geometry, triangle geometry enters a rich
new phase.

Theorem 2 (Orthocenter and ortholine) The altitude
lines of a non-dual triangle meet at a unique point o,
called theorthocenter of the triangle. The altitude points
of a non-dual trilateral join along a unique line O, called
theortholine of the trilateral. The ortholine O of the dual
trilateral of a triangle is dual to the orthocenter o of the
triangle.
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Figure 8: Orthocenter o and ortholine O of a triangle
a1a2a3 and its dual trilateral

Figure 8 shows a trianglea1a2a3, its dual trilateral with as-
sociated trianglel1l2l3, and the corresponding orthocenter
o and ortholineO.
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5 Null points and lines

In modern treatments of hyperbolic geometry, points at in-
finity have a somewhat ambiguous role, and what we call
null lines are rarely discussed, because they are essentially
invisible in the Beltrami Poincaré models built from differ-
ential geometry. However earlier generations of classical
geometers were well aware of them (see for example [14]).

In universal hyperbolic geometry null points and null lines
play a particularly interesting and important role. Here isa
first example, whose name comes from the definition that
a triangle istriply nil precisely when each of its points is
null.

Theorem 3 (Triply nil altitudes) Suppose that α1,α2

and α3 are distinct null points, with b any point lying on
α1α2. Then the altitude lines toα1α3 andα2α3 through b
are perpendicular.

aa

b

a

l

l l1

1

2 3

23

Figure 9: The Triply nil altitudes theorem: bl1⊥bl2

Figure 9 shows that the Triply nil altitudes theorem may
be recast in projective terms: ifl1, l2 andl3 are the poles of
the lines of the triangleα1α2α3 with respect to the conic
c, then the points(α1α3)(bl1) = (bl2)

⊥ , (α2α3)(bl2) =

(bl1)
⊥ andl3 are collinear.

In keeping with triangles and trilaterals, a (cyclic) set of
four points is called aquadrangle, and a (cyclic) set of
four lines aquadrilateral . The next result restates some
facts that we already know about polarity of cyclic quadri-
laterals in terms of perpendicularity.

Theorem 4 (Nil quadrangle diagonal) Suppose that
α1,α2,α3 and α4 are distinct null points, with diago-
nal points e≡ (α1α2)(α3α4) , f ≡ (α1α3)(α2α4) and
g≡ (α1α4)(α2α3). Then the lines e f, eg and f g are mu-
tually perpendicular, and the points e, f and g are also
mutually perpendicular.

In classical hyperbolic geometry the null pointsα1,α2,α3

andα4 would be considered to be ‘at infinity’, while the
external diagonal pointsf andg in Figure 10 would be in-
visible. Let us repeat:for us internal and external points
are equally interesting.
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2
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Figure 10:Triply right diagonal trianglee f g

6 Couples, parallels and bases

Points and lines are the basic objects in planar hyperbolic
geometry. Given one pointa, we may construct its dual
line A ≡ a⊥, and conversely given a lineA we may con-
struct its dual pointa≡ A⊥. After that, there is in general
nothing more to construct. For two objects, namely cou-
ples, sides and vertices, the situation is considerably more
interesting, and gives us a chance to introduce some im-
portant additional concepts.

Given a non-dual coupleaL we know we can construct the
dual lineA≡ a⊥ and the dual pointl ≡ L⊥, and the altitude
line N and the altitude pointn. Now we introduce another
major point of departure from classical hyperbolic geome-
try, which provides an ironic twist to the oft-repeated his-
tory of hyperbolic geometry as a development arising from
Euclid’s Parallel Postulate.

Theorem 5 (Parallel line and point) For any non-dual
coupleaL there is a unique line P which passes through
a and is perpendicular to the altitude line N ofaL, namely
P≡ a

(

a⊥L
)

, and there is a unique point p which lies on a⊥

and is perpendicular to the altitude point n ofaL, namely
p≡ a⊥

(

aL⊥
)

. Furthermore P and p are dual.

a

L

L

L

n N

P

p
a

a

n

p

N

P

a

L

Figure 11:Parallel line P and parallel point p of the
coupleaL
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The lineP is theparallel line of the coupleaL, and the
point p is theparallel point of the coupleaL. These are
shown in Figure 11. We may also refer toP as thepar-
allel line to the line L through a. This is how we will
henceforth use the termparallel in universal hyperbolic
geometry—we do not say thattwo lines are parallel.

Theorem 6 (Base point and line)For any non-dual cou-
ple aL there is a unique point b which lies on both L and
the altitude line N ofaL, namely b≡

(

aL⊥
)

L, and there
is a unique line B which passes through both L⊥ and the
altitude point n ofaL, namely B≡

(

a⊥L
)

L⊥. Furthermore
B and b are dual.

The pointb is thebase pointof the coupleaL, and the line
B is the base lineof the coupleaL. These are shown in
Figure 12.
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L

Figure 12:Base point b and base line B of the coupleaL

7 Sides, vertices and conjugates

There are also constructions for sides and vertices, and in
fact the complete pictures associated with the general cou-
ple, side and vertex are essentially the same, but with dif-
ferent objects playing different roles.

Figure 13 shows the constructions possible if we start with
a sidea1a2. Note that in this example one of these points
is internal and one is external. A bit more terminology: we
say that the sidea1a2 is null precisely whena1a2 is a null
line, andnil precisely when at least one ofa1, a2 is a null
point. The vertexL1L2 is null precisely whenL1L2 is a
null point, andnil precisely when at least one ofL1, L2 is
a null line.

Theorem 7 (Side conjugate points and lines )For any
sidea1a2 which is not both nil and null, there is a unique
point b1 ≡ (a1a2)a⊥1 which lies on a1a2 and is perpendicu-
lar to a1, and there is a unique point b2 ≡ (a1a2)a⊥1 which
lies on a1a2 and is perpendicular to a2.

The pointsb1 and b2 are theconjugate points of the
side a1a2. The duals of these points are the linesB1 ≡

a1(a1a2)
⊥ andB2 ≡ a2 (a1a2)

⊥, which are theconjugate
linesof the sidea1a2. These relations are involutory: if the
sideb1b2 is conjugate to the sidea1a2, thena1a2 is also
conjugate tob1b2.
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Figure 13:Conjugate points and conjugate lines of the
sidea1a2

The same picture can also be reinterpreted by starting with
a vertex.

Theorem 8 (Vertex conjugate points and lines)For any
vertex A1A2 which is not both nil and null, there is a
unique line B1 ≡ (A1A2)A⊥

1 which passes through A1A2

and is perpendicular to A1, and there is a unique line
B2 ≡ (A1A2)A⊥

1 which passes through A1A2 and is per-
pendicular to A2.

The linesB1 and B2 are theconjugate linesof the ver-
tex A1A2. The duals of these lines are the pointsb1 ≡

A1 (A1A2)
⊥ andb2 ≡A2 (A1A2)

⊥, which are theconjugate
points of the vertexA1A2. This relation is also involutory:
if the vertexB1B2 is conjugate to the vertexA1A2, then
A1A2 is also conjugate toB1B2. This is shown also in Fig-
ure 14, which is essentially the same as Figures 12 and 13.

A

A

A

B
A

A

A
B

a aA A
b

b

1 21 2

1

1

1

1
1

2

2

2

2

2

= =

(      )

Figure 14:Conjugate points and conjugate lines of the
vertexA1A2

Furthermore the exact same configuration results if we had
started with one of the sidesa1b2, or a2b1, or b1b2, or with
one of the verticesA1B2, or A2B1, or B1B2. However if
we had started with aright side, meaning that the two

9
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points are perpendicular, such asa1b1, then we would ob-
tain L = a1b1 and its dual pointl . But then the conjugate
side ofa1b1 would coincide witha1b1, and similarly the
conjugate vertex of a right vertex such asA1B1 would co-
incide withA1B1.

8 Reflections

The basic symmetries of hyperbolic geometry arereflec-
tions, but they have a somewhat different character from
Euclidean reflections. Hyperbolic reflections send points
to points and lines to lines, preserving incidence, in other
words they areprojective transformations. There are two
seemingly different notions, the reflectionσa in a (non-
null) pointa, and the reflectionσL in a (non-null) lineL. It
is an important fact that these two notions end up agreeing,
in the sense that

σa = σA

whenA = a⊥.

The transformationσa is defined first by its action on null
points, and then by its action on more general points and
lines.

For a non-null pointa, the reflectionσa sends a null point
α to the other null pointα′ on the lineαa. We write

α′ = ασa.

In caseaα is a null line, in other words a tangent to the
null circle c, thenα′ ≡ α. Note that ifa was itself a null
point, then this definition would yield a transformation that
would send every null point toa, which will not be a sym-
metry in the sense we wish. However such transformations
can still be useful.
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b
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m
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b

b

b

1

1

1
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2

2

2

g

g

g
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Figure 15:Reflection in the point a or the dual line A≡ a⊥

Once the action of a projective transformation on null
points is known, it is determined on all points and lines,
first of all on lines through two null points, and then on an
arbitrary point by means of two such lines passing through
it, and then on arbitrary lines. Figure 15 shows the reflec-
tion σa and its action on a pointb to getc≡ bσa. First find

a line throughb meeting the null circle at pointsβ1 andβ2,
then constructγ1 ≡ β1σa andγ1 ≡ β1σa, and then set

c≡ bσa ≡ (ab)(γ1γ2) .

For the reflectionσL in a line L, the idea is dual to the
above. It is defined first by its action on null lines, and
then by its action on more general points and lines. For a
non-null lineL, the reflectionσL sends a null lineΠ to the
other null lineΠ′ passing through the pointLΠ. We write

Π′ = ΠσL.

In caseLΠ is a null point,Π′ ≡ Π.

Once the action of a projective transformation on null lines
is known, it is determined on all points and lines, since it
is first of all determined on points lying on two null lines,
and then on an arbitrary line by means of two such points
lying on it, and then on arbitrary points.

Of course there is also a linear algebra/matrix approach
to defining reflections. Ifa = [u : v : w] then the action of
σa = σa⊥ on a pointb≡ [x : y : z] is given by the projective
matrix product

bσa = [x : y : z]





u2−v2+w2 2uv 2uw
2uv −u2+v2+w2 2vw

−2uw −2vw u2 +v2−w2





where the entries are only determined up to a scalar. The
move to three dimensions simplifies the discussion.

9 Midpoints, midlines, bilines and bipoints

The notion of themidpointof a side can be defined once
we have the notion of a reflection. It also has a metrical
formulation in terms of quadrance, which we have not yet
introduced. There are three other closely related concepts,
that of midline, biline and bipoint. Midpoints and mid-
lines refer to sides, while bilines and bipoints refer to ver-
tices. The existence of these objects reduces to questions
in number theory—-whether or not certain quadratic equa-
tions have solutions.

If c = bσd then we sayd is amidpoint of the sidebc. In
this case the pointe≡ d⊥ (bc) is also a midpoint ofbc, and
the two midpointsd ande of bc are perpendicular. The
dual lineD ≡ d⊥ is amidline of bc, meaning that it meets
bcperpendicularly in a midpoint, namelye. The reflection
σD in D of b is alsoc. Similarly the dual lineE ≡ e⊥ is also
a midline ofbc. In Euclidean geometry midlines are called
perpendicular bisectors. In hyperbolic geometry there are
generally either zero or two midpoints between any two
points, and so also zero or two midlines.

10
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Figure 16:Midpoints and midlines ofbc

Figure 16 shows the midpointsmand midlinesM of a side
bc. Figure 17 shows how to construct the midpoints and
midlines of the sidebcwhen such exist. For the midpoints
of bc we first join b andc to the pointa ≡ (bc)⊥ to form
lines M andN. If these are both interior lines, then their
meets with the null circle give a completely nil quadrangle
one of whose diagonal points isa, and the other two diago-
nal pointsd ande lie onbcand are the required midpoints.
The dualsD andE of d ande respectively are the midlines
of bc.
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A
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N
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M

a

a

D
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E

E

e

d
e

d

c

b

c

b

Figure 17:Midpoints d and e ofbc, or bilines D and E of
MN

The dual notions to midpoints and midlines of sides are the
notions of bilines and bipoints of vertices. IfM andN are
lines andM = NσD then the lineD is abiline of the vertex
MN. In this case the lineE ≡ D⊥ (MN) is also a biline of
MN, and the two bilinesD andE of MN are perpendicular.

The dual pointd≡D⊥ is abipoint of MN, and it joinsMN
perpendicularly in a biline, namelyE. This implies that the
reflectionσd in d of M is alsoN. Similarly the dual point
e≡ E⊥ is also a bipoint ofMN. In Euclidean geometry,
bilines are called vertex bisectors or angle bisectors. Bi-
points have no Euclidean analog.

Figure 17 can equally well be interpreted as illustrating the
process of obtaining bilinesD andE and bipointsd ande
of the vertexMN.

10 Hyperbolic triangle geometry

The richness of Euclidean triangle geometry is not re-
flected in the classical hyperbolic setting, but the situa-
tion is remedied with universal hyperbolic geometry. Here
we give just a quick glimpse in this fascinating direction,
which will be the focus of a subsequent paper in this series
(see also [17]).
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Figure 18:Circumcenters and circumlines of a triangle
a1a2a3

Figure 18 shows a trianglea1a2a3 together with its six mid-
pointsm (one is off the page) and corresponding six mid-
lines M. The midpoints are collinear three at a time on
four linesC calledcircumlines. The midlines are concur-
rent three at a time on four pointsc calledcircumcenters.
The circumcenters are dual to the circumlines. Although
we have not defined circles yet, a triangle generally has
zero or four circumcircles, whose centers are at its circum-
centers, if these exist.
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Figure 19:Pascal’s theorem via hyperbolic geometry

An important application of circumlines is toPascal’s the-
orem, one of the great classical results of geometry. Fig-
ure 19 shows three linesA1,A2 andA3 which meet the null

11
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circle at six null pointsα. The dual points ofA1,A2 andA3

area1,a2 anda3 respectively. The trianglea1a2a3 has six
midpointsm (red) and the four circumlinesC (blue) pass
through three midpoints each.

Two of the original three lines, such asA1 andA2, deter-
mine four null pointsα, and the other two diagonal points
formed by such a quadrangle of null points, not including
A1A2, give two midpointsm, in this case of the sidea1a2.
So Pascal’s theorem is here seen as a consequence of the
fact that thesix midpoints of a triangle are collinear three
at a timeforming the circumlines.

The six null pointsα can be partitioned into three sets of
two in 15 ways. By different choices of the linesA1,A2 and
A3, there are altogether 15 such diagrams associated to the
same six null points, and 60 possible circumlinesC play-
ing the role of Pascal’s line. Such a large configuration has
many remarkable features, some of them projective, some
of them metrical.

11 Parallels and the doubled triangle

Given a trianglea1a2a3, thedouble triangle d1d2d3 is the
triangle whose lines are the parallelsP1,P2 andP3 to the
linesL1,L2 andL3 of a1a2a3 through the pointsa1,a2 and
a3 respectively. We retain the usual notational conventions,
so thatd1 = P2P3 etc. The situation is shown in Figure 20.

a

dP

L

a

d

P

L

a

d

1

11

1

3

3

3

3

2

2

P

L

2

2

Figure 20:A trianglea1a2a3 and its double triangle
d1d2d3.

The next theorem is surprising to me, and seems to require
a somewhat involved computation.

Theorem 9 (Double median triangle) If d1d2d3 is the
double triangle of a trianglea1a2a3, then a1,a2 and a3 are
midpoints of the sides ofd1d2d3.

In Euclidean geometry the points in the next two theorems
would both be the centroid of the triangle.

Theorem 10 (Double point) If d1d2d3 is the double trian-
gle of a trianglea1a2a3, then the lines a1d1, a2d2 and a3d3

are concurrent in a point x.

Theorem 11 (Second double point)If d1d2d3 is the dou-
ble triangle of a trianglea1a2a3, andg1g2g3 is the double
triangle ofd1d2d3, then the lines a1g1, a2g2 and a3g3 are
concurrent in a point y.

These are shown in Figure 21;x is thedouble point of the
trianglea1a2a3, andy is thesecond double pointof the
trianglea1a2a3.
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g
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3

3

3

2

2

2

Figure 21:First and second double points of a triangle
a1a2a3

It is not the case that the pattern continues in the obvious
way: one cannot define a third double point in an analo-
gous way. The study of the double triangle is clearly an
interesting departure point from Euclidean triangle geom-
etry.

12 Quadrance and spread

We now introduce the two basic measurements in univer-
sal hyperbolic geometry, thequadrancebetween points
and thespreadbetween lines. These are analogs of the
corresponding notions in Euclideanrational trigonometry,
but we assume no familiarity with this theory (although
for a deeper understanding one should carefully compare
the two). Our definition of quadrance and spread follows
our projective orientation, and is given here in terms of the
cross-ratiobetween four particular points or lines. The im-
portance of this cross-ratio was shown in ([3]).

Suppose thata1 anda2 are points and thatb1 andb2 are the
conjugate points of the sidea1a2, as shown in Figure 22.
Then define thequadrance betweena1 anda2 to be the
cross-ratio of points:

q(a1,a2) ≡ (a1,b2 : a2,b1) .

The quadranceq(a1,a2) is zero ifa1 = a2. It is negative if
a1 anda2 are both interior points, and approaches infinity
asa1 or a2 approaches the null circle. It is undefined (or
infinite) if one or both ofa1,a2 is a null point. It is positive
if one of a1 anda2 is an interior point and the other is an
exterior point. It is negative if botha1 anda2 are exterior
points anda1a2 is an interior line. It is zero ifa1a2 is a null
line. It is positive if botha1 anda2 are exterior points and
a1a2 is an exterior line.

12
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Figure 22:Quadrance defined as cross-ratio:
q(a1,a2) ≡ (a1,b2 : a2,b1)

The usual distanced (a1,a2) betweena1 and a2 in the
Klein model is also defined in terms of a cross-ratio, in-
volving two other points: the meets ofa1a2 with the null
circle. This is problematic in three ways. First of all for
two general points there may be no such meet, and so the
Klein distance does not extend to general points. But even
if the meets exist, it is not easy to separate them alge-
braically to get four points in a prescribed and canonical
order to apply the cross-ratio. Finally to get a quantity
that acts somewhat linearly, one is forced to introduce a
logarithm or inverse circular function. This is much more
complicated analytically, and makes extending the theory
to finite fields, for example, more problematic.

In any case it turns out that ifa1 anda2 are interior points,
there is a relation between quadrance and the Klein dis-
tance:

q(a1,a2) = −sinh2 (d (a1,a2)) . (2)

To define the spread between lines, we proceed in a dual
fashion. In Figure 22,B1 andB2 are the conjugate lines of
the vertexA1A2. Define thespread between the linesA1

andA2 to be the cross-ratio of lines:

S(A1,A2) ≡ (A1,B2 : A2,B1) .

This is positive ifA1 andA2 are both interior lines that meet
in an interior point. In fact ifθ(A1,A2) is the usual angle
betweenA1 andA2 in the Klein model, then it turns out
that

S(A1,A2) = sin2 (θ(A1,A2)) . (3)

The relations (2) and (3) allow you to translate the subse-
quent theorems in this paper to formulas of classical hy-
perbolic trigonometry in the special case of interior points
and lines.

The spreadS(A1,A2) between linesA1 andA2 is equal to
the quadrance between the dual points, that is

S(A1,A2) = q
(

A⊥
1 ,A⊥

2

)

.

So the basic duality between points and lines extends to the
two fundamental measurements.

A circle is given by an equation of the formq(x,a) = k for
some fixed pointa called thecenter, and a numberk called
thequadrance.

Here we show the circles centered at a pointa of various
quadrances. Figure 23 shows circles centered at a pointa
whena is an interior point. Figure 24 shows circles cen-
tered at an exterior pointa. Both of these diagrams should
be studied carefully. Note that the dual linea⊥ of a is such
a circle, of quadrance 1. Also note that the situation is dra-
matically different fora interior ora exterior. In the case
of a an exterior point, there is a non-trivial circle of quad-
rance 0, namely the two null lines througha, and all circles
meet the null circle at the two points where the dual linea⊥

meets it. In classical hyperbolic geometry such curves are
known asconstant width curves—however from our point
of view they are just circles.
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Figure 23:Circles centered at a (interior)
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Figure 24:Circles centered at a (exterior)

There is a dual approach to circles where we use the rela-
tion S(X,L) = k for a fixed lineL and a variable lineX. We
leave it to the reader to show that we obtain the envelope
of a circle as defined in terms of points. So the notion of a
circle is essentially self-dual.
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13 Basic trigonometric laws

For most calculations, we need explicit analytic formulae
for the main measurements.

Theorem 12 The quadrance between points a1 ≡
[x1 : y1 : z1] and a2 ≡ [x2 : y2 : z2] is

q(a1,a2) = 1−
(x1x2 +y1y2−z1z2)

2

(

x2
1 +y2

1−z2
1

)(

x2
2 +y2

2−z2
2

) .

Theorem 13 Thespread between lines L1 ≡ (l1 : m1 : n1)
and L2 ≡ (l2 : m2 : n2) is

S(L1,L2) = 1−
(l1l2 +m1m2−n1n2)

2

(

l21 +m2
1−n2

1

)(

l22 +m2
2−n2

2

) .

These expressions are not defined if one or more of the
points or lines involved is null, and reinforce the fact that
the duality between points and lines extends to quadrances
and spreads, and so every metrical result can be expected
to have a dual formulation.

For a trianglea1a2a3 with associated trilateralL1L2L3 we
will use the usual convention thatq1 ≡ q(a2,a3), q2 ≡
q(a1,a3) and q3 ≡ q(a1,a2), and S1 ≡ S(L2,L3), S2 ≡
S(L1,L3) and S3 ≡ S(L1,L2). This notation will also
be used in the degenerate case whena1,a2 and a3 are
collinear, orL1,L2 andL3 are concurrent.
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Figure 25:Quadrance and spreads in a hyperbolic
triangle

With this notation, here are the main trigonometric laws in
the subject. These are among the most important formulas
in mathematics.

Theorem 14 (Triple quad formula) If a1,a2 and a3 are
collinear points then

(q1 +q2+q3)
2 = 2

(

q2
1 +q2

2+q2
3

)

+4q1q2q3.

Theorem 15 (Triple spread formula) If L1,L2 and L3

are concurrent lines then

(S1 +S2+S3)
2 = 2

(

S2
1 +S2

2 +S2
3

)

+4S1S2S3.

Theorem 16 (Pythagoras)If L1 and L2 are perpendicu-
lar lines then

q3 = q1 +q2−q1q2.

Theorem 17 (Pythagoras’ dual) If a1 and a2 are perpen-
dicular points then

S3 = S1 +S2−S1S2.

Theorem 18 (Spread law)

S1

q1
=

S2

q2
=

S3

q3
.

Theorem 19 (Spread dual law)

q1

S1
=

q2

S2
=

q3

S3
.

Theorem 20 (Cross law)

(q1q2S3− (q1 +q2+q3)+2)2 = 4(1−q1) (1−q2) (1−q3) .

Theorem 21 (Cross dual law)

(S1S2q3− (S1 +S2+S3)+2)2 = 4(1−S1) (1−S2) (1−S3) .

There are three symmetrical forms of Pythagoras’ theorem,
the Cross law and their duals, obtained by rotating indices.
A proper appreciation for the beauty and power of these
formulas requires some familiarity with rational trigonom-
etry in the plane (see [18]), together with rolling up one’s
sleeves and solving many trigonometric problems in the
hyperbolic setting. For students of geometry, this is an ex-
cellent undertaking.

14 Right triangles and trilaterals

Right triangles and trilaterals have some additional impor-
tant properties besides the fundamental Pythagoras theo-
rem we have already mentioned. We leave the dual results
to the reader. Thales’ theorem shows that there is an aspect
of similar triangles in hyperbolic geometry. It also helps
explain why spread is the primary measurement between
lines in rational trigonometry.

Theorem 22 (Thales)Suppose thata1a2a3 is a right tri-
angle with S3 = 1. Then

S1 =
q1

q3
and S2 =

q2

q3
.

14
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Figure 26:Thales’ theorem: S1 = q1/q3

The Right parallax theorem generalizes, and dramatically
simplifies, a famous formula of Bolyai and Lobachevsky
(see [6]) which usually requires exponential and circular
functions, hence a prior understanding of real numbers.

Theorem 23 (Right parallax) If a right triangle a1a2a3

has spreads S1 = 0, S2 = S and S3 = 1, then it will have
only one defined quadrance q1 = q given by

q =
S−1

S
.

a1

a2

a3

q

S

a

a

a

1

2

3

S

q

Figure 27:Right parallax theorem: q= (S−1)/S

We may restate this result in the form

S=
1

1−q
.

Napier’s Rules are much simpler in the universal setting,
where only high school algebra is required.

Theorem 24 (Napier’s Rules)Suppose a right triangle
a1a2a3 has quadrances q1,q2 and q3, and spreads S1,S2

and S3 = 1. Then any two of the five quantities S1,S2,q1,q2

and q3 determine the other three, solely by the three basic
equations from Thales’ theorem and Pythagoras’ theorem:

S1 =
q1

q3
S2 =

q2

q3
q3 = q1 +q2−q1q2.

15 Triangle proportions and barycentric co-
ordinates

The following theorems implicitly involve barycentric co-
ordinates. These are quite useful both in universal and clas-
sical hyperbolic geometry, see for example [17].

Theorem 25 (Triangle proportions) Suppose thata1a2a3

is a triangle with quadrances q1,q2 and q3, correspond-
ing spreads S1,S2 and S3, and that d is a point lying on
the line a1a2, distinct from a1 and a2. Define the quad-
rances r1 ≡ q(a1,d) and r2 ≡ q(a2,d), and the spreads
R1 ≡ S(a3a1,a3d) and R2 ≡ S(a3a2,a3d). Then

R1

R2
=

S1

S2

r1

r2
=

q1

q2

r1

r2
.

a1 a2

a3

d

S S1 2

r r

r

1 2

3

q 2 q1

R R1 2

Figure 28:Triangle proportions:
R1/R2 = (S1/S2)× (r1/r2)

Theorem 26 (Menelaus)Suppose thata1a2a3 is a non-
null triangle, and that L is a non-null line meeting a2a3,
a1a3 and a1a2 at the points b1, b2 and b3 respectively. De-
fine the quadrances

r1 ≡ q(a2,b1) t1 ≡ q(b1,a3)
r2 ≡ q(a3,b2) t2 ≡ q(b2,a1)
r3 ≡ q(a1,b3) t3 ≡ q(b3,a2) .

Then r1r2r3 = t1t2t3.
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Figure 29:Menelaus’ theorem: r1r2r3 = t1t2t3

15



KoG•14–2010 N. J. Wildberger: Universal Hyperbolic Geometry II: A pictorial overview

Theorem 27 (Menelaus’ dual) Suppose thatA1A2A3 is a
non-null trilateral, and that l is a non-null point joining
A2A3, A1A3 and A1A2 on the lines B1, B2 and B3 respec-
tively. Define the spreads

R1 ≡ S(A2,B1) T1 ≡ S(B1,A3)
R2 ≡ S(A3,B2) T2 ≡ S(B2,A1)
R3 ≡ S(A1,B3) T3 ≡ S(B3,A2) .

Then R1R2R3 = T1T2T3.
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Figure 30:Menelaus dual theorem: R1R2R3 = T1T2T3

Theorem 28 (Ceva)Suppose that the trianglea1a2a3 has
non-null lines, that a0 is a point distinct from a1,a2 and
a3, and that the lines a0a1, a0a2 and a0a3 meet the lines
a2a3, a1a3 and a1a2 respectively at the points b1, b2 and
b3. Define the quadrances

r1 ≡ q(a2,b1) t1 ≡ q(b1,a3)
r2 ≡ q(a3,b2) t2 ≡ q(b2,a1)
r3 ≡ q(a1,b3) t3 ≡ q(b3,a2) .

Then r1r2r3 = t1t2t3.
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Figure 31:Ceva’s theorem: r1r2r3 = t1t2t3

Theorem 29 (Ceva dual)Suppose that the trilateral
A1A2A3 is non-null, and that A0 is a line distinct from
A1,A2 and A3, and that the points A0A1, A0A2 and A0A3

join the points A2A3, A1A3 and A1A2 respectively on the
lines B1, B2 and B3. Define the spreads

R1 ≡ S(A2,B1) T1 ≡ S(B1,A3)
R2 ≡ S(A3,B2) T2 ≡ S(B2,A1)
R3 ≡ S(A1,B3) T3 ≡ S(B3,A2) .

Then R1R2R3 = T1T2T3.
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Figure 32:Ceva’s dual theorem: R1R2R3 = T1T2T3

16 Isosceles triangles

Theorem 30 (Pons Asinorum)Suppose that the non-null
triangle a1a2a3 has quadrances q1,q2 and q3, and corre-
sponding spreads S1,S2 and S3. Then q1 = q2 precisely
when S1 = S2.

Theorem 31 (Isosceles right)If a1a2a3 is an isosceles
triangle with two right spreads S1 = S2 = 1, then also
q1 = q2 = 1 and S3 = q3.

a1

a2

a3

S3

q3

Figure 33: Isosceles right triangle: q1 = q2 = 1 and
S3 = q3

Theorem 32 (Isosceles triangle)Suppose a non-null iso-
sceles trianglea1a2a3 has quadrances q1 = q2 ≡ q and q3,
and corresponding spreads S1 = S2 ≡ S and S3. Then the
following relations hold:

q3 =
4(1−S)q(1−q)

(1−Sq)2 and S3 =
4S(1−S)(1−q)

(1−Sq)2 .

a

q

q

1

a2

a
q

3

3
3S

S

S

Figure 34:An isosceles triangle: q1 = q2 = q, S1 = S2 = S
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Theorem 33 (Isosceles parallax)If a1a2a3 is an isosce-
les triangle with a1 a null point, q1 ≡ q and S2 = S3 ≡ S,

then

q =
4(S−1)

S2 .

a

a

a

1

3

2

S

S

q

Figure 35: Isosceles parallax: q= 4(S−1)/S2

17 Equilateral triangles

Theorem 34 (Equilateral quadrance spread)Suppose
that a trianglea1a2a3 is equilateral with common quad-
rance q1 = q2 = q3 ≡ q, and with common spread
S1 = S2 = S3 ≡ S. Then

(1−Sq)2 = 4(1−S)(1−q).
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q
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1

2
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3
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Figure 36:Equilateral quadrance spread theorem:
(1−Sq)2 = 4(1−S)(1−q)

18 Lambert quadrilaterals

Theorem 35 (Lambert quadrilateral) Suppose a quad-
rilateral abcd has all three spreads at a,b and c equal to
1. Suppose that q≡ q(a,b) and p≡ q(b,c). Then

q(c,d) = y =
q(1− p)

1−qp
q(a,d) = x =

p(1−q)

1−qp

q(a,c) = s= q+ p−qp q(b,d) = r =
q+ p−2qp

1−qp

and

S(ba,bd) =
x
r

S(bc,bd) =
y
r

S(ac,ab) =
p
s

S(cb,ca) =
q
s

S(ac,ad) =
q(1− p)

s
S(ca,cd) =

p(1−q)

s

and
S(da,dc) = S= 1− pq.
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s

s

r

r

S

S

Figure 37:Lambert quadrilateralabcd

19 Quadrea and triangle thinness

If a1a2a3 is a triangle with quadrancesq1,q2 andq3, and
spreadsS1,S2 andS3, then from the Spread law the quan-
tity

A ≡ S1q2q3 = S2q1q3 = S3q1q2

is well-defined, and called thequadrea of the triangle
a1a2a3. It is the analog of the squared area in universal
hyperbolic geometry. In Figure 38 several triangles with
their associated quadreas are shown. Note that the quadrea
is positive for a triangle of internal points, but may also be
negative otherwise.

=20

=2

=-1

=0.5

A

A

A

A

Figure 38:Examples of triangles with quadreas
A = −1,0.5,20and2

An interesting aspect of hyperbolic geometry is thattrian-
gles are thin. Here are two ways of giving meaning to this,
both involving the quadrea of a triangle.
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Theorem 36 (Triply nil Cevian thinness) Suppose that
α1α2α3 is a triply nil triangle, and that a is a point dis-
tinct from α1,α2 and α3. Define the cevian points c1 ≡
(aα1)(α2α3), c2 ≡ (aα2) (α1α3) and c3 ≡ (aα3) (α1α2) .
ThenA(c1c2c3) = 1.

a
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a a

a

a

a
a

1 1

1

1

2
2

3

3

2

2

3

3c

c

c
cc

c

Figure 39:Cevian triangle thinness:A(c1c2c3) = 1

Theorem 37 (Triply nil altitude thinness) Suppose that
α1α2α3 is a triply nil triangle and that a is a point dis-
tinct from the duals of the lines. If the altitudes to the lines
of this triangle from a meet the lines respectively at base
points b1,b2 and b3, thenA

(

b1b2b3
)

= 1.

a
b

b

a

a
a

1

1 1

2

2

3

3

2

3

b b

b

ba

a

a
a

1

2

3

Figure 40:Altitude triangle thinness:A
(

b1b2b3
)

= 1

20 Null perspective and null subtended the-
orems

There are many trigonometric results that prominently fea-
turenull pointsandnull lines. We give a sample of these
now. For some we include the dual formulations, for others
these are left to the reader.

Theorem 38 (Null perspective)Suppose thatα1,α2 and
α3 are distinct null points, and b is any point onα1α3

distinct from α1 and α3. Suppose further that x and y
are points lying onα1α2, and that x1 ≡ (α2α3) (xb) and
y1 ≡ (α2α3)(yb). Then

q(x,y) = q(x1,y1) .
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qq
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Figure 41:Null perspective theorem: q(x,y) = q(x1,y1)

Theorem 39 (Null subtended)Suppose that the line L
passes through the null pointsα1 and α2. Then for any
other null pointα3 and any line M, let a1 ≡ (α1α3)M and
a2 ≡ (α2α3)M. Then q≡ q(a1,a2) and S≡ S(L,M) are
related by

qS= 1.

In particular q is independent ofα3.

q

q

S S

a

a

a

a
a

a

a

a

a

a

L
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L
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1

1

1

1

2

2

2

2

3

3

Figure 42:Null subtended theorem: qS= 1

Figure 42 shows two different examples; note thatM need
not pass through any null points. The Null subtended the-
orem allows you to create a hyperbolic ruler using just a
straight-edge, in the sense that you can use it to repeatedly
duplicate a given segment on a given line. Here is the dual
result.

Theorem 40 (Null subtended dual)Suppose that the
point l lies on the null linesΛ1 and Λ2. Then for any
other null lineΛ3 and any point m, let A1 ≡ (Λ1Λ3)m and
A2 ≡ (Λ2Λ3)m. Then S≡ S(L1,L2) and q≡ q(l ,m) are
related by

Sq= 1.

Theorem 41 (Opposite subtended)Supposeαβγδ is a
quadrangle of null points, and thatυ,µ are also null points.
Let a≡ (αµ) (γδ), b ≡ (βµ)(γδ), c ≡ (γυ)(αβ) and d≡
(δυ)(αβ) . Then

q(a,b) = q(c,d) .
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Figure 43:Opposite subtended theorem: q(a,b) = q(c,d)

Butterfly theorems have been investigated in the hyper-
bolic plane ([13]). The next theorems concern a related
configuration of null points.

Theorem 42 (Butterfly quadrance) Suppose thatαβγδ
is a quadrangle of null points, with g≡ (αγ) (βδ) a diago-
nal point. Let L be any line passing through g, and suppose
that L meetsαδ at x andβγ at y. Then

q(g,x) = q(g,y) .

a

g
q

q

x

y

d

b

g

a

L
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g
q q

x

y

d
g

b

Figure 44:Butterfly quadrance theorem: q(g,x) = q(g,y)

Theorem 43 (Butterfly spread) Suppose thatαβγδ is a
quadrangle of null points, with g≡ (αγ) (βδ) a diagonal
point. Let L be any line passing through g. Then

S(L,αδ) = S(L,βγ) .

a

g

x

y

d

b

g

a

L

L

g
x

y

d
g

b

S
S S

S

Figure 45:Butterfly spread theorem: S(L,αδ) = S(L,βγ)

21 The 48/64 theorems

In universal hyperbolic geometry we discover many con-
stants of nature that express themselves in a geometrical
way. Prominent among these are the numbers 48 and 64,
but there are many others too!

Theorem 44 (48/64) If the three spreads between oppo-
site lines of a quadrangleα1α2α3α4 of null points are P,R
and T, then

PR+RT+PT = 48

and

PRT= 64.

a
e

a
g

f R

T

P
a

a1

2

3

4

Figure 46:The48/64 theorem: PR+RT+PT = 48
and PRT= 64

It follows that

1
R

+
1
S

+
1
T

=
3
4
.

In particular if we know two of these spreads, we get a
linear equation for the third one.

Theorem 45 (48/64dual) If the three quadrances be-
tween opposite points of a quadrilateralΛ1Λ2Λ3Λ4 of null
lines are p, r and t, then

pr + rt + pt = 48

and

prt = 64.

L

L

L

L1

2

3

4

p
t
r

Figure 47:The48/64dual theorem: pr+ rt + pt = 48and
prt = 64
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22 Pentagon theorems and extensions

The next theorem does not rely on null points, but is closely
connected to a family of results that do.

Theorem 46 (Pentagon ratio)Supposea1a2a3a4a5 is a
pentagon, meaning a cyclical list of five points, no three
consecutive points collinear. Definediagonal points

b1 ≡ (α2α4) (α3α5) , b2 ≡ (α3α5) (α4α1) ,
b3 ≡ (α4α1) (α5α2) , b4 ≡ (α5α2) (α1α3) ,

and b5 ≡ (α1α3) (α2α4) ,

and subsequentlyopposite points

c1 ≡ (a1b1)(a2a5) , c2 ≡ (a2b2)(a3a1) ,
c3 ≡ (a3b3)(a4a2) , c4 ≡ (a4b4)(a5a3) ,

and c5 ≡ (a5b5)(a1a4) .

Then

q(b1,c4)q(b2,c5)q(b3,c1)q(b4,c2)q(b5,c3)

= q(b2,c4)q(b3,c5)q(b4,c1)q(b5,c2)q(b1,c3) .
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Figure 48:Pentagon ratio theorem

Since the pentagon is arbitrary, it follows by a scaling ar-
gument thatexactly the same theoremholds in planar Eu-
clidean geometry, where we replace the hyperbolic quad-
ranceq with the Euclidean quadranceQ, since for five very
close interior points, the hyperbolic quadrances and Eu-
clidean quadrances are approximately proportional.

There are also some interesting additional features that oc-
cur in the special case of the pentagon when all the points
ai are null.

Theorem 47 (Pentagon null product) Suppose
α1α2α3α4α5 is a pentagon of null points. Define diagonal
points

b1 ≡ (α2α4) (α3α5) , b2 ≡ (α3α5) (α4α1) ,
b3 ≡ (α4α1) (α5α2) , b4 ≡ (α5α2) (α1α3) ,

and b5 ≡ (α1α3) (α2α4) .

Then

q(b1,b2)q(b2,b3)q(b3,b4)q(b4,b5)q(b5,b1) = −
1
45 .
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Figure 49:Pentagon null product theorem:
q(b1,b2)q(b2,b3)q(b3,b4)q(b4,b5)q(b5,b1) = − 1

45

Theorem 48 (Pentagon null symmetry) With nota-
tion as in the Pentagon ratio theorem, suppose that
α1α2α3α4α5 is a pentagon of null points, then

q(b1,c4) = q(b5,c2) , q(b2,c5) = q(b1,c3) ,
q(b3,c1) = q(b2,c4) , q(b4,c2) = q(b3,c5)

and q(b5,c3) = q(b4,c1) .

Furthermore if we fixα2,α3,α4 and α5, then the quad-
rance q(b4,c2) = q(b3,c5) is constant, independent ofα1.
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Figure 50:Pentagon null symmetry theorem:
q(b1,c4) = q(b5,c2) etc

Since five points determine a conic, here is an analog to the
Pentagon ratio theorem for general septagons.

Theorem 49 (Septagon conic ratio)Suppose
α1α2α3α4α5α6α7 is a septagon of points lying on a conic.
Define diagonal points

b1 ≡ (α3α5) (α4α6) , b2 ≡ (α4α6) (α5α7) ,
b3 ≡ (α5α7) (α6α1) , b4 ≡ (α6α1) (α7α2) ,
b5 ≡ (α7α2) (α1α3) , b6 ≡ (α1α3) (α2α4) ,

and b7 ≡ (α2α4) (α3α5) ,

and opposite points

c1 ≡ (α1b1) (α7α2) , c2 ≡ (α2b2)(α1α3) ,
c3 ≡ (α3b3) (α2α4) , c4 ≡ (α4b4)(α3α5) ,
c5 ≡ (α5b5) (α4α6) , c6 ≡ (α6b6)(α5α7) ,

and c7 ≡ (α7b7)(α6α1) .
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Then

q(c1,b5)q(c2,b6)q(c3,b7)q(c4,b1)q(c5,b2)q(c6,b3)q(c7,b4)

= q(c1,b4)q(c2,b5)q(c3,b6)q(c4,b7)q(c5,b1)q(c6,b2)q(c7,b3) .

Since the notion of a conic is projective, a scaling argument
shows that the same theorem holds also in the Euclidean
case. Figure 51 shows the special case of a septagon of null
points (top), and a more general case where the septagon
lies on a conic (bottom), in this case a Euclidean circle.

I conjecture that the Septagon conic ratio theorem extends
to all odd polygons.
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Figure 51:Septagon conic ratio theorem

23 Conics in hyperbolic geometry

The previous result used the fact that conics are well-
defined in hyperbolic geometry, since they can be defined
projectively, and we are working in a projective setting. A
natural question is: can we also study conics metrically
as we do in the Euclidean plane? In fact we can, and the
resulting theory is both more intricate and richer than the
Euclidean theory, nevertheless incorporating the Euclidean
case as a limiting special case.

We have already mentioned (hyperbolic) circles and il-
lustrated them in Figures 23 and 24. Let us now just
briefly outline some results for a(hyperbolic) parabola,
which may be defined as the locus of a pointa satisfying

q(a, f ) = q(a,D) where f is a fixed point called afocus,
andD is a fixed line called adirectrix , and whereq(a,D)
is the quadrance from the pointa to the base pointb of
the altitude toD througha. The following theorems sum-
marize some basic facts about such a hyperbolic parabola,
some similar to the Euclidean situation, others quite dif-
ferent. The situation is illustrated in Figure 52. Careful
examination reveals many more interesting features of this
situation, which will be discussed in a further paper in this
series.

Theorem 50 (Parabola focus directrix pair) If a (hyper-
bolic) parabola p has focus f1 and directrix D1, then it also
has another focus f2 ≡D⊥

1 and another directrix D2 ≡ f⊥1 .

Theorem 51 (Parabola tangents)Suppose that b1 is a
point on D1 such that the two midlines of the sideb1 f1
exist. Then these midlines meet the altitude line to D1
through b1 at two points (both labelled a1 in the Figure)
lying on the parabola, and are the tangents to the parabola
at those points.

We note that in addition if the two midlines of the sideb1 f1
exist, then both midlines meet at the pointb2 ≡ (b1 f1)

⊥ ly-
ing onD2 and the corresponding midlines of the sideb2 f2
meet the altitude line toD2 throughb2 at two points (both
labelleda2 in the Figure) lying on the parabola, and them-
selves meet atb1. This gives a pairing between some of
the pointsb1 lying on D1 and some of the pointsb2 lying
on D2. Of the four points labelleda1 anda2 lying on the
parabola, one of thea1 points and one of thea2 points are
(somewhat mysteriously) perpendicular. The entire situa-
tion is very rich, and emphasizes once again (see [20]) that
the theory of conics is not a closed book, but rather a rich
mine which has only been partly explored so far.

Recall that in Euclidean geometry the locus of a pointa
satisfyingq(a, f1) + q(a, f2) = k for two fixed points f1
and f2 and some fixed numberk is a circle.
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Figure 52:Construction of a (hyperbolic) parabola
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Theorem 52 (Sum of two quadrances)The (hyperbolic)
parabola p described in the previous theorem may also be
defined as the locus of those points a satisfying

q(a, f1)+q(a, f2) = 1.

Many classical theorems for the Euclidean parabola hold
also for the hyperbolic parabolap. Here are two, illustrated
in Figure 53.

Theorem 53 (Parabola chord spread)If a and b are two
points on the hyperbolic parabola p with directrix D and
focus f, and if c is the meet of D with the tangent of p at
a, while d is the meet of D with the tangent to p at b, then
S(c f, f d) = S(a f, f b).

Theorem 54 (Parabola chord tangents perpendicular)
If a and b are two points on the hyperbolic parabola p with
directrix D and focus f , and if e is the meet of D with ab,
while g is the meet of the tangents to p at a and b, then e f
is perpendicular to g f.

d

g

c

e

f

a

p

b
D

S

S

Figure 53:Hyperbolic parabola with focus f and
directrix D

24 Bolyai’s construction of limiting lines

Here is a universal version of a famous construction of J.
Bolyai, to find the limiting linesU andV to an interior line
L through a pointa, where limiting means thatU andV
meetL on the null circle.

Start by constructing the altitude lineK from a to L, meet-
ing L at c, then the parallel lineP througha to L, namely
that line perpendicular toK. Now let m denote the mid-
points ofac, there are either two such points or none. If
there are two, choose any pointb on L, construct the alti-
tudeN to P throughb, and reflectb in both midpointsm to
getd andeonP. The sideedhasa a midpoint, and the hy-
perbolic circle centered ata throughd andemeetsN at the
pointsu andv. ThenU ≡ au andV ≡ av are the required
limiting lines as shown.

a
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m

m

L

K

P
N

U

V

Figure 54:A variant on J. Bolyai’s construction of the
limiting lines from a to L

This construction seems to not be possible with only a
straightedge, as we use a hyperbolic circle; this would cor-
respond to the fact that there are two solutions. The ques-
tion of what can and cannot be constructed with only a
straightedge seems also an interesting one.

25 Canonical points

Both the Canonical points theorem in this section and the
Jumping Jack theorem of the next section involvecubic
relationsbetween certain quadrances. I predict both will
open up entirely new directions in hyperbolic geometry.

The Canonical points theorem has rather many aspects, one
of which is a classical theorem of projective geometry.

Theorem 55 (Canonical points)Suppose thatα1 andα2

are distinct null points, and that x3 and y3 are points ly-
ing on α1α2. For any third null pointα3, and any point
b1 lying on α2α3, define x2 = (α1α3)(y3b1) and y2 =

(α1α3) (x3b1). Similarly for any point b2 lying on α1α3

define x1 = (α2α3)(y3b2) and y1 = (α2α3) (x3b2). Then
b3 ≡ (x1y2) (x2y2) lies onα1α2. Now define points

c1 = (x2x3) (y2y3) c2 = (x1x3) (y1y3) c3 = (x1x2)(y1y2)

and corresponding points

z3 = (c1b1)(α1α2) w2 = (c1b1) (α1α3)

z1 = (c2b2)(α2α3) w3 = (c2b2) (α1α2)

z2 = (c3b3)(α1α3) w1 = (c3b3) (α2α3) .

Then z3 and w3 depend only on x3 and y3, and not on
α3,b1 and b2. Furthermore b1,z2,w3 are collinear, as are
b2,z3,w1, and b3,z1,w2.
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Figure 55:Canonical points theorem:x3y3 determines
z3w3

In particular note that the theorem implies that any two
pointsx andy whose join passes through two null points
determine canonically two pointsz andw lying on xy in
this fashion. We callzandw thecanonical pointsof x and
y. In Figure 55z3 andw3 are the canonical points ofx3 and
y3, while z1 andw1 are the canonical points ofx1 andy1,
andz2 andw2 are the canonical points ofx2 andy2.

Theorem 56 (Canonical points cubic)With notation as
above, the quadrances q≡ q(x3,y3) and r≡ q(x3,z3) sat-
isfy the cubic relation

(q−4r)2 = 8qr (2r −q) . (4)

We call the algebraic curve

(x−4y)2 = 8xy(2y−x)

the Canonical points cubic. The graph is shown in Fig-
ure 56. It is perhaps interesting that the point[9/8,9/8] is
the apex of one of the branches of this algebraic curve.

21.510.50-0.5-1-1.5-2

2

1.5

1

0.5

-0.5

-1

-1.5

-2

x

y

Figure 56:The Canonical points cubic:
(x−4y)2 = 8xy(2y−x)

26 The Jumping Jack theorem

Here is my personal favourite theorem. Although one can
give a computational proof of it, the result begs for a con-
ceptual framework that explains it, and points to other sim-
ilar facts (if they exist!)

Theorem 57 (Jumping Jack) Suppose thatα1α2α3α4 is
a quadrangle of null points, with g≡ (α1α3)(α2α4) a
diagonal point, and let L be any line through g. Then
for an arbitrary null point α5, define the meets x≡
(α1α3) (α4α5), y≡ L(α4α5), z≡ (α2α4)(α3α5) and w≡
L(α3α5). If r ≡ q(x,y) and s≡ q(z,w) then

16rs(3−4(s+ r)) = 1.
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Figure 57:Jumping Jack theorem:16rs(3−4(s+ r)) = 1

We call the algebraic curve

16xy(3−4(x+y)) = 1

the Jumping Jack cubic. The Jumping Jack theorem
shows that it has an infinite number of rational solutions,
which include a parametric description with 6 independent
parameters.

The graph is shown in Figure 58. Note the isolated solution
[1/4,1/4], which is the centroid of the trilateral formed by
the three asymptotes.
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Figure 58:Jumping Jack cubic:16xy(3−4(x+y)) = 1
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27 Conclusion

Universal hyperbolic geometry provides a new framework
for a classical subject. It provides a more logical foun-
dation for this geometry, as now analysis is not used, but
only high school algebra with polynomials and rational
functions. The main laws of trigonometry require only
quadratic equations for their solutions. Theorems extend
now beyond the familiar interior of the unit disk, and also
to geometries over finite fields. Although we have not
stressed this, it turns out that almost all the theorems we

have described also hold in elliptic geometry! That is be-
cause the algebraic treatment turns out to be essentially in-
dependent of the projective quadratic form in the three di-
mensional space that is implicitly used to set up the theory
in (1). We have shown how many classical results can be
enlarged to fit into this new framework, and also described
novel and interesting results.

So there are many opportunities for researchers to make es-
sential discoveries at this early stage of the subject. When
it comes to hyperbolic geometry, we are all beginners now.
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