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Methods of graphic statics are used for solving problems of statics, evaluation of equilibrium and

determination of internal forces as well as forces in supports of structural systems by applying only

geometrical operations. They are based on construction of two reciprocal diagrams, the form diagram

which shows the geometry of structure (location of internal nodes and supports, external loads and

lengths of structural elements) and the force diagram where polygons of forces, assembled of vectors,

represent equilibrium of internal forces in structural elements, forces in supports and external loads.

Relation of the two reciprocal diagrams allows simultaneous control over the shape of the structure and

internal forces in structural elements and thus finding an efficient geometry of the structure at an early

stage of structural design process.

Developed in 19th century, methods of graphic statics were limited only to planar and simple spatial

problems of statics. Owing to today’s advanced tools for computer-aided design (CAD), the development

and application of the methods of three-dimensional (3D) graphic statics, such as 3D algebraic polyhedral

graphic statics and 3D vector-based graphic statics, both based on ideas from 19th century, are available.

• Replacing single force with a force acting at a given point and a force lying in a given plane

• Equilibrium of a spatial node

• Equilibrating two-force system with forces on edges of given tetrahedron

Forces S1 and S2 are two given forces. The force S1

acts at the given point A and the force S2 lies in the

given plane β (Figure a). Three lines s11, s12 and s13 are

given through the same point A, and lines s21, s22 and s23

are lying in the plane β.

In our case, the six lines are given in a special position,

that is they are edges of a tetrahedron. For each of

the given forces, three equilibrating forces will be

determined.

For the force S1, using the procedure for finding

equilibrium of a spatial node described in the previous

subsection, three equilibrating forces S11, S12 and S13,

acting along the given lines s11, s12 and s13 at the same

point A, which is also a vertex of the tetrahedron, will

be determined (Figure b).

For the force S2 three forces act in the same plane β
along the given lines s21, s22 and s23. In this special

position, points T1, T2 and T3 are vertices of the given

tetrahedron and also intersection points of the lines

s11, s12 and s13 with the plane β in general case. Since all

lines, along which the three equilibrating forces S21,

S22 and S23 to the force S2 act, are known, they can be

determined in the force diagram. The line d1, connecting

the intersection point T2 of the lines of action of the

forces S22 and S23 and the intersection point T of the

lines of action of the forces S2 and S21, represents

Culmann’s line (Figure c). Using well-known methods of

planar (2D) graphic statics, we obtain equilibrating

forces S21, S22 and S23.

Here, we describe an example of finding equilibrium of a given spatial node P4 supported

by three bars P1P4 (line s1), P2P4 (line s2) and P3P4 (line s3). The bars are connected to the

ground with spherical supports P1, P2 and P3. Also, the node P4 is a spherical node at

which given force S acts along its line of action s (Figure a).

The procedure for equilibrium finding of a spatial node is similar to the procedure for

replacing a single force with three forces acting along bars P1P4, P2P4 and P3P4. In the

form diagram (Figure b), we define plane σ1 containing the line of action s and the line s2,

and plane σ2 containing the lines s1 and s3. The intersection line of the planes σ1 and σ2 is

the line d. Now, all the lines in the form diagram are known, thus the procedure is

carried out in the force diagram (Figure b, on the right side).

First, we place the line s2’ parallel to the line s2 at the tail of the force S, and at the

head of the force S, we place the line d’ parallel to the line d. Since the force D = S+S1

is the sum of the forces S and S1, and since all of them lie in the plane parallel to the

plane σ1, the intersection of two lines gives the point which defines magnitudes of the

forces D and S1. The component S1 acts along the line s1, and the force D acts along

the line d’. In that way S1 and D are determined. Now, resultant force of the forces S2

and S3 must be in equilibrium with the force D. It is well known that two forces are in

equilibrium if they act along the same line, they are opposite in sense and equal in

magnitude. Thus, the force D and the force −D=S2+S3 act along the line d’ and cancel

each other out. Again, in the force diagram, we place a line s2’ at the tail of the force −D

parallel to the line s2 and at the head of the force −D we place a line s3’ parallel to the

line s3. Since all the forces −D, S2 and S3 lie in the same plane parallel to the plane σ2,

the intersection point of the lines s2’ and s3’ determines forces S2 and S3. In that way

forces S, S1, S2 and S3 form a closed polygon in the force diagram, i.e. the spatial node

P4 is in equilibrium (Figure c).

Examples 

The procedures for replacing given force system with some other force system and procedures for finding equilibrating forces to the

given force system described here are carried out using geometric constructions which can be considered as a partial three-dimensional

extension of funicular polygon construction. The extension of funicular polygon is based on two principles :

• Replacing two forces with a force acting at a given point and a force lying in a given plane

Theorem that “any system of forces can

always be represented by two forces one

of which lies in a given plane, and the other

passes through a given point not lying in

the plane” was also proved by Whitehead [5].

The first procedure for replacing two forces with a

force acting at a given point and a force lying in a given

plane is to resolve each of two given forces S1 and S2

into a component acting at the given point A and a

component lying in a given plane β. The resultant R1 of

the two components acts at the point A and the

resultant R2 of the other two components lies in the

plane β. Two obtained forces are statically equivalent

to the given forces S1 and S2.

Another procedure, similar to the funicular polygon

construction, is as follows. S1 and S2 are given forces

acting on lines s1 and s2 (Figure a). The plane σ1 is

defined by the given point A and the line s1, and the

plane σ2 by the line s2 and a point A1 arbitrarily chosen

on the line s1. The line s12 is the intersection of the

planes σ1 and σ2. (The line s12 can also be considered as a

connecting line between two arbitrarily chosen points,

A1 on the line s1 and A2 on the line s2.) The component

S12 of the force S1 and the component S21 of the force

S2 act along the same line s12 and cancel each other.

Second component S11 of the force S1 acts along the

line p1 connecting the points A and A1. Now, the force

S2 can be resolved in the plane σ2. In that way given

forces S1 and S2 are replaced with the forces S11 and

S22 (Figure b).

The point B is the intersection of the line of action of the force S22, line s22, and the given plane β. Span (or join) of two points A and B is

the line p2 (Figure c). The plane σ22 is defined as a join of the lines s22 and p2. Planes σ22 and β intersect in the line p3.

Now, we resolve the force S22 into two components S22,1 and S22,2 along the lines p2 and p3 (Figure d), and the force S11 into components S11,1

and S11,2= − S22,1 (Figure e). Remained components S11,1 = R1, a force which acts at the given point A, and S22,2 = R2, a force which lies in the

given plane β (Figure f), represent equivalent force system to the system of forces S1 and S2. Reversion of the obtained forces R1 and R2

gives equilibrating forces to the given two-force system.

In this example, we will also show translations of

geometric operations into Grassmann algebra expressions.

A plane σ is a join of the given point A and the line of action

s of the given force S (in algebraic terms: join σ = [A ∧ s])

(Figure c).

First component of the force S acts along the line r, which

is the intersection line of the plane σ and a given plane β

(meet r = [σ ∧ β]).

Second component acts along the connecting line p of the

point A and the intersection point P of the line s and the

plane β (meet and then join: P = [s ∧ β], p = [A ∧ P]) (Figure

d).

Previous steps were performed in the form diagram while

the following ones will be performed in the force diagram.

From arbitrarily chosen point O vector s of the force S is

drawn; head of s is the point B (B = O + s).

Lines r’ and p’ are drawn through O and B parallel to the

lines r and p (r’ = [O ∧ r], p’ = [B ∧ p], where r and p are

some vectors on lines r and p). Lines r’ and p’ intersect in

the point C (C = [r’ ∧ p’]) (Figure e).

Vectors s1 and s2 of force components S1 and S2 on lines r

and p are s1 = C – O and s2 = B – C.

2) generally, when constructing

funicular polygon, using first

condition, each of two given forces is

resolved into two components in such a

way that one component of the first

force and one component of the

second force lie on the same line, they

are opposite in sense and equal in

magnitude, namely they cancel each

other.

1) single force can be resolved into

two force components along two

given lines if and only if its line of

action and two given lines are

concurrent and coplanar

Hermann Grassmann (1809. - 1877.) and  Julius Plücker (1801. - 1868.)

For performance and visualisation of the examples of static equivalence and the examples of equilibrium

finding that we present, we have developed a computer program based on algebraic translations of

incidence operations using CAD tool Rhinoceros. Steps of the graphical procedures are carried out

using basic operations of incidence geometry, which can be easily expressed in algebraic form using

Grassmann algebra, thus enabling their conversion into a programme code.

The programme code is written in GhPython (Python interpreter and plug-in for Grasshopper), and the

results are visualized in Rhinoceros (process is described in the figure bellow). All procedures of static

equivalence and geometrical constructions are graphically performed in form diagram and then

followed by force polygons in the force diagram.

Hermann Grassmann’s great contribution to mathematics and

mechanics was his concept of coordinatization of higher

dimensional subsets (subspaces) of geometrical sets, and Julius

Plücker is responsible for application of these ideas to the set

of lines in the Extended Euclidean space.

Extended Euclidean Space

To the Euclidean space, whose basic elements are points, lines and planes, we add one plane at infinity, ideal plane, which contains lines at

infinity and points at infinity, ideal lines and ideal points, so that every other plane in space contains exactly one ideal line, it is extended

with this one line, which is then its intersection with all other planes parallel to it, and every line in space contains, or is extended by, one

ideal point so that this point is its intersection with all other lines parallel to it. This kind of space is called the extended Euclidean space

P3(ℝ), and it is a 3-dimensional projective space. The points of the extended Euclidean space are either the points of the Euclidean space E3

or the ideal points, and the entire E3
is canonically embedded in P3(ℝ) as the complement of the ideal plane. It is also embedded in the vector

space ℝ4
or equivalently, we can think of it as an image of projection of ℝ4

into three dimensions which can be done in infinitely many ways.

In the usual Cartesian coordinate system of ℝ4
, with four mutually orthogonal axes, a vector 𝒙 = 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 is given by its coordinates

𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 which represent projections of this vector to the four axes. we denote the one-dimensional subspace, the span of this vector,

by 𝒙 and it is a line of ℝ4
passing through the origin point.

Then the homogenous coordinates of the corresponding point in P3(ℝ) are denoted by 𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 and the homogeneity property states

that

λ 𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 = λ𝑥0 ∶ λ𝑥1 ∶ λ𝑥2 ∶ λ𝑥3 = 𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 , λ ≠ 0, λ ∈ ℝ

must be true for every vector in ℝ4
.

Having in mind the first paragraph, we usually choose the first variable 𝑥0, thus the set of ideal points becomes the plane of P3(ℝ) having the

equation 𝑥0 = 0, and the Euclidean space E3
is isomorphic to its complement, a set given with the equation 𝑥0 ≠ 0, and is the image of the

projection

𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 = 1 ∶
𝑥1
𝑥0

∶
𝑥2

𝑥0
:
𝑥3

𝑥0
=

𝑥1
𝑥0

,
𝑥2

𝑥0
,
𝑥3

𝑥0

from that set.

The homogenous coordinates of a plane 𝛼0 ∶ 𝛼1 ∶ 𝛼2 ∶ 𝛼3 are interpreted in E3
as the plane passing through the points 𝛼1, 0, 0 , 0 , 𝛼2, 0 and

0, 0, 𝛼3 , its intersections with the coordinate axes, unless the first coordinate 𝛼0 = 0 in which case the plane contains the origin point. The

ideal plane is given by α0:0: 0: 0 with 𝛼0 ≠ 0.

Incidence Relation

In the projective space, on the set of basic elements – points, lines and planes we have the incidence relation. This space can be

axiomatically described with axioms of incidence if we want to employ synthetic geometry, or we can explore it analytically, which we will,

using homogenous coordinates.

The incidence relation has threefold interpretations, three aspects. First is relation itself in a passive sense, to be incident meaning to lie

in or to pass through, noting the relation between elements of the space. The other two are active, used to define an element with other

lower or higher dimensional elements. First is the meet or intersection, for instance two lines meet or intersect at a point, and the other

is the join or span, for instance the span of two points is a line, or the line is given as a join of two points.

Grassmann’s outer product

Grassmann defined an operation, which he named outer product, that takes two elements of the vector space and attaches to this pair one

element of another, higher dimensional, vector space. The adjective “outer” thus expressing that the result of the operation in not

contained in the same vector space as the operands.

He then prescribes two properties that this operation must satisfy so that the resulting vector space is uniquely determined - this

operation is anti-commutative and linear in both arguments, bilinear.

We present his construction for ℝ4
and 𝑘 = 2 . Let 𝑒𝑖 be the elements of canonical basis for ℝ4 . We denote the outer product of two 

elements 𝑒𝑖 and 𝑒𝑗 by 𝑒𝑖 ∧ 𝑒𝑗 and for all elements 𝒙 = 𝑥0𝑒0 + 𝑥1 𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3 and 𝒚 = 𝑦0𝑒0 + 𝑦1 𝑒1 + 𝑦2𝑒2 + 𝑦3𝑒3 in ℝ4
we have

𝒙 ∧ 𝒚 = 𝑥0𝑦1 − 𝑥1𝑦0 𝑒0∧ 𝑒1 + 𝑥0𝑦2 − 𝑥2𝑦0 𝑒0∧ 𝑒2 + 𝑥0𝑦3 − 𝑥3𝑦0 𝑒0∧ 𝑒3 + 𝑥2𝑦3 − 𝑥3𝑦2 𝑒2∧ 𝑒3 + 𝑥3𝑦1 − 𝑥1𝑦3 𝑒3∧ 𝑒1 + 𝑥1𝑦2 − 𝑥2𝑦1 𝑒1∧ 𝑒2

We relate the incidence relation to the concept of the outer product, the bilinear operation of Grassmann algebra. First, the meet 

operation, which defines elements of P
3
(ℝ) using lower dimensional elements is correspondent, in Grassmann’s terminology, to the 

progressive product. For instance, a line, in Grassmann geometrical algebra, can be defined as outer product of two points. The adjective 

progressive emphasizing that this definition starts with lower and results in higher dimensional elements, or subspaces.

Analogously, given the duality principle, a line geometrically defined as intersecting line of two planes can be defined as outer product of 

two planes. This kind of outer product, where we start with higher and end up with lower dimensional objects is, in Grassmann’s

terminology, noted as regressive product.

A line 𝐿 interpreted as the progressive product of two points 𝐿 = 𝒙 ∧ 𝒚 has Grassmann coordinates 𝐿 = 𝑙01, 𝑙02, 𝑙03, 𝑙23, 𝑙31, 𝑙12 ∈ Λ2ℝ4
where

𝑙𝑖𝑗 = 𝑥𝑖𝑦𝑗
− 𝑥𝑗𝑦𝑖

for 𝑖, 𝑗 ∈ 0,1 , 0,2 , 0,3 , 2,3 , 3,1 , 1,2 and the following relation, Plücker relation must hold: 𝑙01𝑙23 + 𝑙02𝑙31 + 𝑙03𝑙12 = 0.

The Plücker coordinates of a line are the homogenous coordinates 𝑙01: 𝑙02: 𝑙03: 𝑙23: 𝑙31: 𝑙12 = (𝒍,  𝒍),                                                            
where 𝒍 = 𝑙01, 𝑙02, 𝑙03 and  𝒍 = 𝑙23, 𝑙31, 𝑙12 and the Plücker relation now reads 𝒍 ∙  𝒍 = 0.

𝒙 ∈ 𝜶 ⟺ 

𝑥0𝛼0 + 𝑥 𝛼 = 0 

𝒙 ∈ 𝐿 ⟺  

𝒙 ∙  𝒍 = 0   and 

−𝑥0𝒍 + 𝒙 × 𝒍 = 0 

𝐿 =  𝒙, 𝒚    ⟺ 

𝐿 = (𝑥0𝑦 − 𝑦0𝑥  , 𝒙 × 𝒚) 

𝐿 = 𝜶 ∩ 𝜷  ⟺ 

𝐿 =   𝜶 × 𝜷, 𝛼0𝛽 − 𝛽0𝛼    

𝜶 =  𝐿1, 𝐿2  ⟺ 

𝜶 =    𝒍1
 ∙  𝒍2, −𝒍1  × 𝒍2  

𝒙 = 𝐿1 ∩ 𝐿2  ⟺ 

𝒙 =   𝒍1 ∙  𝒍2
  , −𝒍1

 × 𝒍2
   

𝒙 = 𝜶 ∩ 𝐿 ⟺ 

𝒙 =  𝜶 ∙ 𝒍,−𝛼0𝒍 +   𝒙 × 𝒍   

𝜶 =  𝒙, 𝐿  ⟺ 

𝜶 =  𝒙 ∙  𝒍 , −𝑥0𝒍 +   𝒙 × 𝒍  

 1 

Table Computing with homogenous coordinates

Python codes: a) a line as join of two points

b) a line as meet of two planes

In the Table on the right we present the formulas in 

homogenous coordinates for the following incidence 

relations:

• a point incident with (lying in) a plane,

• a point incident with (lying on) a line,

• a line as join of two points, 

• a line as meet of two planes, 

• a point as meet of two intersecting lines,

• a plane as join of two intersecting lines,

• a plane as join of a point and non-incident line and

• a point as meet of a line and non-incident plane

These formulas can be easily verified by direct computation 

using vector calculus.  We  write the homogenous 

coordinates of points and planes as

𝒙 = 𝑥0 ∶ 𝑥1 ∶ 𝑥2 ∶ 𝑥3 = 𝑥0,  𝑥

And 𝜶 = 𝛼0 ∶ 𝛼1 ∶ 𝛼2 ∶ 𝛼3 = 𝛼0,  𝛼 ,

thus, emphasizing standard Cartesian coordinates of points in 

E3
, i.e. normal vectors of planes.

Homogenous coordinates of lines are as in (1).

Force coordinates

Since a force acting at a point in the space is lying on a line and due to the principle of transmissibility, we can use the line Plücker

coordinates to derive the coordinates for a force. This is done by the further remark on the geometrical interpretation of the

coordinates; the vector  𝒍 is orthogonal to the vector 𝒍 and can be interpreted as the moment vector about the origin point of the

coordinate system of a force 𝐹 lying on the line.

Furthermore, the ideal point of this line is the point 0: 𝑙01: 𝑙02: 𝑙03 , in other words the vector 𝒍 represents the direction of the line, and if

𝒙 = 1: 𝑥1: 𝑥2: 𝑥3 is any other (non-ideal) point on the line, then we have  𝒍 = 𝑥 × 𝒍 , with 𝑥 = 𝑥1, 𝑥2, 𝑥3 being the Cartesian coordinates of the

point in E3
.

Therefore, a force 𝐹 can be given by its coordinates 𝐹 = 𝒇,  𝒇 , with 𝒇 being is force vector and  𝒇 its moment vector about the origin point

of the coordinate system. These coordinates are not homogenous since the quantity 𝒇 represents its intensity.


