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Abstract We find plane models for all X0(N ), N ≥ 2. We observe a map from
the modular curve X0(N ) to the projective plane constructed using modular forms of
weight 12 for the group�0(N ); the Ramanujan function�,�(N ·) and the third power
of Eisestein series of weight 4, E3

4 , and prove that this map is birational equivalence
for every N ≥ 2. The equation of the model is the minimal polynomial of �(N ·)/�
over C( j).

Keywords Modular forms · Modular curves · Birational equivalence · Modular
polynomial
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1 Introduction

The recent paper [13] by Muić presents a new method of finding defining equations
for modular curves. As an application of the method one example was presented—a
map from X0(N ) to the projective plane defined by

az �→
(
�(z) : E3

4(z) : �(Nz)
)

, (1.1)
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where

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn

is the usual Eisenstein series and

�(z) = q +
∞∑
n=2

τ(n)qn

is the Ramanujan delta function.
Modular curves are defined as quotient spaces of the action of a Fuchsian group

[in the case of X0(N ) the group is the congruence subgroup �0(N )] on the complex
upper half-plane and when compactified by adding cusps, they have the structure of a
compact Riemann surface. This kind of objects are also (complex) algebraic curves.
This connection for the modular curves, as well as their relation to elliptic curves is
extensively studied in [4].

For a modular curve observed as a Riemann surface, the field of meromorphic
functions is isomorphic to the field of modular functions for the subgroup defining
this Riemann surface and we know that this field is transcendental over C of degree
one and also isomorphic to the field of rational functions of the algebraic curve. One
way to find the equation of the algebraic curve is to find the generators of the rational
function field.

If there is more than one generator, we know that they are connected with a poly-
nomial relation. This is true because if we choose one generator, say f , then all other
generators are algebraic over the field C( f ). This polynomial is then the equation of
this algebraic curve. The standard method for computing this polynomial consists of
computing the Fourier expansions of modular functions and solving a linear system
of equations.

Hence, using modular functions in the presented way, we can find equations of
modular curves. The first example is the standard model for X0(N ), whose (affine)
equation is the polynomial relation between the modular j function defined by

j (z) = E3
4(z)

�(z)
, (1.2)

which is also Hauptmodul (the sole generator) for the genus zero curve X0(1), and the
modular function j (N ·). This polynomial is called the classicalmodular polynomial or
modular equation and is the minimal polynomial of j (N ·) overC( j). It is canonical in
the sense that it contains informations over the relations of X0(N ) and elliptic curves,
see [4].

Mathematician have also searched for other generators of modular function fields
of various modular curves and used them to find their equations.

In [5,6], Ishida and Ishii find generators for function fields of X (N ) and X1(N ).
In the first case this generators are functions constructed using Klein forms, and in
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the second case generators are derived using the Weierstrass ℘-function. We use their
argument in proving Theorem 1.1.

We would also like to mention the paper [15] by Young which provides equations
for X0(N ) and as well for X (N ) and X1(N ). Young uses the following claim; if we
take two modular functions with relatively prime degrees of divisors of poles, then
these two functions must generate the modular function field. He then proves that two
such functions (with poles only at infinity) can always be found within a group of
modular functions of �1(N ) whose divisors are supported by the cusps lying above
∞ on X0(N ). Furthermore, he proves that this group is precisely the group of certain
products of generalized Dedekind eta-functions. His equations are the most simple
and beautiful given they have the smallest degrees and smallest coefficients.

On the other hand, compact Riemann surfaces can always be embedded into some
projective space and their image is then a projective curve. This embedding is canoni-
cally done using differentials, but given the relations between differentials on modular
curves and modular forms of the underlaying Fuchsian group, it can also be done with
modular forms, as we see in the example presented at the beginning.

Furthermore, given that modular curves are algebraic curves, we can use modular
forms to construct maps into some projective space and then analyze whether the
image curve and the modular curve are birational by analyzing their function fields.

The method for finding models of modular curves using modular forms on the
defining group is developed by Muić in [11–13]. We give a short overview of this
method in Sect. 2.

Let us return to the example. The image of the map (1.1) is an irreducible plane
projective curve which we denote by CN . In ([13], Lemmas 5.4 and 5.5), it is proved
that the curve Cp is birational to X0(p) for every prime number p and a question was
posed whether the map is always birational.

We answer that question and prove that this is true for every number N ≥ 2.

Theorem 1.1 The curve CN is birational to X0(N ) for every N ≥ 2.

Wewill see that the modular forms defining themap are connected to the generators
of the rational functions field of the image curve; these generators are their quotients.
In this light, we can restate Theorem 1.1 in the following way:

Corollary 1.1 Modular functions j and �(N ·)/� generate C(X0(N )).

These results give us simplemodels for all X0(N ). In Sect. 3 we compute the degree
of this model and see that it is equal to

�(N ) = N
∏
p|N

(1 + 1/p), (1.3)

which is also the index of the subgroup �0(N ) in SL2(Z). This is slightly better than
the standard model, where �(N ) is the degree in each of the two variables.

Some examples of equations (in affine versions) are in the end of Sect. 3 and even
for very small values of N , these numbers are huge.

The classical modular equation is very hard to compute [3] and so are other modular
polynomials for different modular functions (§7 of [3] or [1]) and this is also the case
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for our polynomials. In Sect. 3 we explain the computations of equations and the
limitations of the mentioned standard method for computing equations.

As computed in [2], the explicit bound for the logarithmic height of the modular
polynomial of prime level l is

6l log(l) + 18l.

It would be interesting to compute the height of our polynomials, and we believe that
the bound would be very close to this one.

I would like to thank G. Muić for introducing me into this very interesting subject
and for many useful conversations and advices.

2 Maps to projective plane

Let � be a Fuchsian group of first order. The quotient space of the complex upper
half-planeH by the action of � is a Riemann surface which we will denote X (�). This
set can be compactified by adding orbits of cusps of �. For � = �0(N ), this compact
Riemann surface is denoted by X0(N ) and called modular curve.

The main idea of [13] is to map X (�) to the projective plane P
2 using modular

forms. It is achieved in the following way:
Select k ≥ 2 such that dim Mk(�) ≥ 3. Take three linearly independent modular

forms f , g and h in Mk(�) and construct the map X (�) �→ P
2 by defining it on the

complement of points in X (�) which are orbits of common zeros of f , g and h by

az �→ ( f (z) : g(z) : h(z)). (2.1)

The map defined in this way is uniquely determined holomorphic map from the Rie-
mann surface X (�) to P2. It is actually a rational (in fact regular because the domain
is compact) map

az �→ (1 : g(z)/ f (z) : h(z)/ f (z)).

The image is an irreducible projective curve which we denote by C( f, g, h), whose
degree is less or equal to dim Mk(�) + g(�) − 1. This bound for deg(C( f, g, h))

equals the degree of integral divisors attached to modular forms f , g and h and can
be shown by calculating the number of points in the intersection of C( f, g, h) with a
line in general position (see [13], Lemma 2.2 (vi) for integral divisors).

The degree of the map (2.1) is defined as the degree of the field extension

C(C( f, g, h)) ⊂ C(X (�)), (2.2)

and we denote it by d( f, g, h).
The field of rational functions C(C( f, g, h)) of the image curve is isomorphic to a

subfield of C(X (�)) generated over C by g/ f and h/ f . Therefore, the map (2.1) is
birational equivalence if and only if g/ f and h/ f generate C(X (�)).
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In [13], the following formula for the degree of the image curve C( f, g, h) was
proved (see [13], Corollary 1.5):

Theorem 2.1 Assume that k ≥ 2 is an integer such that dim(Mk(�)) ≥ 3. Let f , g,
h ∈ Mk(�) be three linearly independentmodular forms. Then, we have the following:

d( f, g, h) deg C( f, g, h) = dim(Mk(�)) + g(�) − 1

−
∑

a∈X (�)

min
(
c′f (a), c′g(a), c′h(a)

)
,

where c′f , c′g and c′h are integral divisors attached to modular forms f , g and h.

3 Proof of Theorem 1.1

For a non-constant function f ∈ C(X (�)), the degree of the subfield generated by f
equals the degree of the divisor of poles of f (see [9], §6) which we will denote by

d( f ) = deg(div∞( f )) = [C(X (�)) : C( f )]. (3.1)

Returning to the map (2.1) we have an easy condition for birational equivalence:

Lemma 3.1 The map (2.1) is a birational equivalence if

gcd(d(g/ f ), d(h/ f )) = 1.

Proof The field of rational functions C(C( f, g, h)) is isomorphic to a subfield
C(g/ f, h/ f ) ⊆ C(X0(N )) and the degree of this subfield is precisely d(d, f, g).
Birational equivalence means that d( f, g, h) = 1. Let us see that this is the case with
given conditions. For themodular function g/ f wehave the followingfield extensions:

C(g/ f ) ⊆ C(g/ f, h/ f ) ⊆ C(X (�)),

where the second extension is of degree d( f, g, h). From the definition (3.1) of d(g/ f )
we have

d( f, g, h)|d(g/ f ).

The same is true for the function h/ f . Hence, if d( f, g, h) divides two relatively prime
numbers, it must be equal to 1. 
�

The converse is not true. For the map (1.1) when N > 2 the degrees of divisors of
poles of j and �(N ·)/� are always divisible by 2.

But we can look at other functions in C(C( f, g, h)). This is an argument which
is used in ([5], Lemma 2) to find generators of modular function fields for modular
curves X (N ) and X1(N ).
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Lemma 3.2 If there are two non-constant functions f1 and f2 in C(g/ f, h/ f ) such
that gcd(d( f1), d( f2)) = 1, then the map (2.1) is a birational equivalence.

Proof The map (2.1) is birational equivalence if d( f, g, h) = 1, where d( f, g, h)

is given by (2.2) and is also the degree of C(g/ f, h/ f ) ⊆ C(X (�)). Since f1 ∈
C(g/ f, h/ f ), we have a sequence of fields

C( f1) ⊆ C(g/ f, h/ f ) ⊆ C(X (�)).

The degree of

C( f1) ⊆ C(X (�))

is d( f1), by definition (3.1). We conclude that d( f, g, h) must divide d( f1).
The same holds for the function f2, d( f, g, h)must divide d( f2). Hence, d( f, g, h)

is a common divisor of two relatively prime numbers d( f1) and d( f2) and so must be
equal to 1. 
�

We can now prove Theorem 1.1.

Proof We look at the following two non-constant functions in C ( j,�(N ·)/�):

f1 = j and f2 = j N−2 +
(

�(N ·)
�

)N−1

.

We compute d( f1) and d( f2) and show that these numbers are relatively prime.
First, we need the divisors of modular forms�,�(N ·) and E3

4 . They are computed
in ([13], Lemma 4.3). For our purpose, it is important that E3

4 has zeros in the �0(N )-
orbits of (1 + √

(−3))/2 and that � and �(N ·) have zeros at cusps of �0(N ) so
supports of their divisors are disjoint.

The full set of representatives of cusps of �0(N ) is the set of rational numbers
c/d where d is a positive divisor of N , gcd(c, d) = 1 and there are ϕ(gcd(d, N/d))

representatives with denominator d, where ϕ denotes the Euler function(see [8], Proof
of Theorem 4.2.7).

Divisors of � and �(N ·) are ([13], Lemma 4.2):

div(�) =
∑
d|N

1≤d≤N

N

d

1

gcd(d, N/d)
ac/d

div(�(N ·)) =
∑
d|N

1≤d≤N

d

gcd(d, N/d)
ac/d .

Now, the divisor of poles of f1 is minus the divisor of � and its degree is
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d( f1) =
∑
d|N

1≤d≤N

N

d

ϕ(gcd(d, N/d))

gcd(d, N/d)
= �(N ). (3.2)

where �(N ) is the Dedekind Psi function defined in (1.3), (also see [13], end of
Section 4).

Let us compute the degree of divisor of poles of f2. We start with finding its divisor.
Function �(N ·)/� has poles at cusps where � has zero of greater order than �(N ·),
and that happens precisely at the cusps c/d for d − N/d < 0, that is for d <

√
N .

Therefore, we have

div∞(�(N ·)/�) =
∑
d|N

1≤d≤√
N

N/d − d

gcd(d, N/d)
ac/d .

The function j N−2 has poles at all cusps of �0(N ) and we conclude that f2 has
poles at all cusps. In the cusps c/d where d ≥ √

N the order of pole equals the order
of pole of j N−2 whereas in the cusps c/d for d <

√
N the order of pole is the greater

of orders of poles of j N−2 and (�(N ·)/�)N−1. Hence we have

d( f2) =
∑
d|N

1≤d≤√
N

ϕ(gcd(d, N/d))

gcd(d, N/d)
max

(
N

d
(N − 2),

(
N

d
− d

)
(N − 1)

)
(3.3)

+
∑
d|N

d≥√
N

ϕ(gcd(d, N/d))

gcd(d, N/d)

N

d
(N − 2).

Themaximum appearing in formula (3.3) equals N
d (N−2) for d > 1 and for d = 1

the maximum is (N − 1)2 = N (N − 2) + 1 and we have

d( f2) = N (N − 2) + 1 +
∑
d|N

1<d≤N

ϕ(gcd(d, N/d))

gcd(d, N/d)

N

d
(N − 2) = (N − 2)d( f1) + 1.

(3.4)
Since gcd(d( f1), d( f2)) = 1, Lemma 3.2 implies that dN = 1 and we have proved

Theorem 1.1. 
�

We have shown that the degree of the map (1.1) is one, in other words this map is
birational equivalence. We can now also compute the degree of the image curve CN
using the formula relating these values, that we presented in Theorem 2.1. The left
hand-side of the formula is equal to this degree, and the right hand-side is equal to

dim(M12(�0(N ))) + g(�0(N )) − 1,
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given that the divisors of modular forms have disjunct supports as we have already
seen.

This quantity can be computed using known formulas for the dimension of space
of modular forms and genus of the modular curve which can be found [8], and it is
equal to �(N ).

At the end, we present some equations for our models, where the polynomials PN
are minimal polynomials of �(N ·)/� over C( j).

If a homogeneous polynomial PN is the defining (minimal) equation of the plane
curve CN , then PN (�(z), E3

4(z),�(Nz)) is also a modular form for �0(N ) which is
a null-form. We know that a null-form is determined by vanishing of a finite number
of initial coefficients in its Fourier expansion. This gives us a linear system where the
unknowns are coefficients of PN and the coefficients are polynomial combinations of
finite number of initial coefficients of modular forms �(z), E3

4(z),�(Nz). We have
used Sage for our computations.

The problem in computing arises from the size of the linear system, which has
dimensions

(d + 1)(d + 2)

2
× d�(N ) + 1,

where d is the degree of PN which we know is �(N ).
Polynomials PN are affine (dehomogenized) forms of computed polynomials PN .

P2(x, y) = 16777216y3 − xy + 196608y2 + 768y + 1

P3(x, y) = 150094635296999121y4 − x2y + 38263752 xy2 − 213516729579636 y3

+ 1512 xy + 10589493366 y2 − 177876 y + 1

P4(x, y) = 324518553658426726783156020576256 y6 − 4096 x3y2

+ 6597069766656 x2y3 − 2490310449950789468160 xy4

+ 193118646128519322884263378944 y5 − x3y + 1620049920 x2y2

− 569986827839078400 xy3 + 38322004008487170909143040 y4

+ 2256 x2y + 9349606932480 xy2 + 2538589037956201185280 y3

− 1105920 xy + 557658553712640 y2 + 40894464 y + 1

P5(x, y) = 867361737988403547205962240695953369140625 y6 − x4y

+ 29296875000 x3y2 − 246763229370117187500 x2y3

+ 547152012586593627929687500000 xy4

− 85798035343032097443938255310058593750 y5 + 3000 x3y

+ 1243896484375000 x2y2 + 12913942337036132812500000 xy3

+ 2829028744599781930446624755859375 y4

− 2587500 x2y + 1322387695312500000 xy2

− 31095165759325027465820312500 y3

+ 587500000 xy + 29664516448974609375 y2 − 9433593750 y + 1

123



On a simple model of X0(N )

References

1. Blake, I., Csirik, J.A., Rubinstein, M., Seroussi, G.: On the computation of modular polynomials
for elliptic curves. Technical. Report, Hewlett-Packard Laboratories. http://www.math.uwaterloo.ca/
~mrubinst/publications/publications.html (1999). Accessed 11 Jan 2018

2. Bröker,R., Sutherland,A.V.:An explicit height bound for the classicalmodular polynomial. Ramanujan
J. 22, 293–313 (2010)

3. Bröker, R., Lauter, K., Sutherland, A.V.: Modular polynomials via isogeny volcanoes. Math. Comput.
81, 1201–1231 (2012)

4. Diamond, F., Shurman, J.: A First Course in Modular Forms. Springer, New York (2005)
5. Ishida, N.: Generators and equations for modular function fields of principal congruence subgroups.

Acta Arith. 85(3), 197–207 (1998)
6. Ishida, N., Ishii, N.: Generators and defining equations of the modular function field of the group

�1(N ). Acta Arith. 101(4), 303–320 (2002)
7. Ligozat, G.: Courbes modulaires de genre 1. Bull. Soc. Math. France (Memoire) 43, 1–80 (1972)
8. Miyake, T.: Modular Forms. Springer, Berlin (2006)
9. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies inMathematics, vol. 5. Amer-

ican Mathematical Society, Providence (1995)
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