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ABSTRACT: In this paper, in Euclidean spad, we treat the pedal surfaces of special line
congruenceg;, which are of the 1st order and tiéth class. We derive the parametric and
implicit equations of these surfaces which enaldl@hematicavisualizations and proving some

properties such as their order2k + 2, they possess or-ple straight line and pass through the

absolute conic oE3. The properties of their singularities, which do not lieZnple line, and of
the pinch points on th2k-ple line, are also shown.

Keywords: congruence of lines, inversion, pedal surfaces of congmiemultiple line, multiple

point, pinch point

1. INTRODUCTION

CongruenceC is a double infinite line sys-
tem, i.e. it is the set of lines in the three-
dimensional space (projective, affine or Eu-
clidean) depending on two parameters. Line
z € C is said to be theay of a congruence.
The order of a congruence is the number of
its rays which pass through an arbitrary point;
the classof a congruence is the number of its
rays which lie in an arbitrary planeith order,

nth classcongruence is signed’. A point

is called thesingular pointof a congruence if
oo! rays pass through it. A plane is called the
singular planeof a congruence if it contains
oo! rays.

According to [6, p. 64], [10, pp. 1184-1185],
there are only two types of the first order con-

gruences: the first one are the congruences of
nth class and their rays are transversals of one

straight lined andnth order space curvé

Figure 1: Directing lines of’!

which cuts this straight line im — 1 points
(see Fig. 1), and the second are congruences
of 3rd class and its rays cut a twisted cubic
twice. The properties of the first order con-
gruences can be found in [1].

In Euclidean spacé’?, the pedal surfaceof
congruence™ with respect tgoole P is the
locus of the feet of perpendiculars from finite
point P to the rays of congruenc&™, [5].

In [2] we define the transformation of three-
dimensional projective space where corre-
sponding points lie on the rays of congruence
C! and are conjugate with respect to proper
quadricV (see Fig. 2). This transformation
we called the(n + 2) degree inversiorwith
respect to congruenag’ and quadric? and
signed it byi.t? : P3 — P3, We proved that it
takes a straight line to the: + 2) order space

Figure 2: Inversion of degree+ 2



curve and a plane to the + 2) order surface
which containg:-ple straight line.

The class of such surfaces was elaborated in

detail by Sturm [8, pp. 315-328].

The pedal surface of the first order congruence

C! is the image of the plane at infinity given
by i32, where U is any sphere with center
P. According to the properties af," it was

shown that the pedal surface of congrue@ite

is (n+2) order surface withe-ple line straight

line d which passes through the absolute conic

of E? and the directing curve?, [2].

2. SPECIAL C., CONGRUENCES

A special class of’! arises if all intersection
pointsD; (see Fig. 1) coincide. In this cas®e

is a plane curve with one singular point of the

highest multiplicityn — 1, and lined passes
through this point.

Here we will regard special! wheren is an
even number, i. en = 2k, k € N, and direct-
ing curvec? is a plane curve witli2k —1)-ple
singular point.

2.1 (2k — 1)-folium

(2k — 1)-folium is curvec®* given by the fol-
lowing polar equation:

r(¢) = cos(2k — 1)p, ¢ €[0,m). (1)

Figure 3:(2k — 1)-folium

According to the multiple-angle formula,
cos(2k — 1) can be displayed as

k
(—1)'C3Hcos ) (sin)* (2)
i=0

whereC3¥~! is a binomial coefficient.
Therefore, from eq. (1), by using the substi-
tutionsr(p) = /a2 + 2 cosp = \/Q;T?ﬂ

andsin ¢ = —Z—, we obtain the following
Varty?

implicit equation of(2k — 1)-folium:
(2* +y*)" — 71 =0, where, (3)

k
7_2]4:—1 — Z(_l)icgzk—lx%:—l—%y%' (4)

=0

From eq. (3) itis clear thgk — 1)-folium is
2k-order curvec®®, with (2k — 1)-ple point at
the origin, wherk — 1 tangent lines at it are
given by equatiom?~! = 0, [7, p. 27]. The
line at infinity is thek-ple tangent line of:?*
which touches it at the absolute points.

2.2 Congruence Cy,

Let axis z and (2k — 1)-folium ¢?* in plane
z = 0 be the directing lines of congruenc§,.

Figure 4: Directing lines o€, for k — 2

All singular points ofC;, (the points which
containoo! rays of C;,) lie on its directing
linesc?* andz. If point C lies on curve-?* and
C # O, then the rays of}, which pass trough
C form pencil of lines(C) in plane¢ € [z]
which containg” andz, see Fig. 5a. If point
Z lies on axisz andZ # O, then all the lines
which join Z with the points of curve?* are



Figure 6: Rays of’3, (for k = 2) through non singular points and non singular planes.

the rays of’!. They form2k- degree coné%
with vertexZ. Axis z is (2k — 1)-ple genera-
trix of %", see Fig. 5b. The rays through point
O form 2k — 1 pencil of lines(O) in the planes
determined by axis and2k — 1 tangent lines
of ¢ atO, and pencilO) in the plane of*,
see Fig. 5¢. Singular planes @}, (the planes
which containoco! rays) are the planes of the
pencil [z] and plane of(2k — 1)-folium, see
Fig. 5c.

Every pointA, which is not the singular point
of C3,., determines plang, € [z] which cuts
c?* in only one pointC beside the origin. Line
AC, which cutsz in one pointZ, is the unique
ray of C;, through point4, see Fig. 6a. If
plane(, contains one of the tangent lines of
c** at O, then points” andZ coincide withO
and line AO is the unique ray of;, through
A, see Fig. 6b.

Every planen which is not the singular plane
of C3,, contains2k rays of Cj,. Planea

cuts axisz in point Z and curvec?* in points
C;,5 = 1,...,2k. Lines ZC; are 2k rays of
C}Z in planea. They are the intersection of
planea and2k-degree con@%, and can be
real and different, coinciding or imaginary, see
Fig. 6¢.. If o passes through poir®, then
2k — 1 rays are the intersections afwith the
planes through and the tangent lines of*
at O, and one ray lies in the plane of*, see
Fig. 6d.

3. PEDAL SURFACESOF CJ,

As we mentioned in the Introduction: in Eu-
clidean spac&3, the pedal surface of congru-
enceC with respect to poleP is the locus of
the feet of perpendiculars from finite poift
to the rays of congruenae According to [2],
the pedal surfaces @f, is 2k + 2 order sur-
face with2k-ple line z, and we will denote it
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3.1 Construction z

In plane( trough axisz, the rays ofC;, form

pencil of lines(C'), whereC' # O is the inter-

section of¢ andc?*. In 2k — 1 planes, deter-

mined by the tangent lines of* atO and axis

z, pointC' coincides withO. If finite pole P is

in the general position to the directing lines of -
Cs:» the feet of perpendiculars froifi to the

rays of pencil(C') form circlec with diameter

CP', whereP’ is the orthogonal projection of L
P to (, see Fig. 7a,b. The proof of this state-
ment is elementary. Figure 8

For given poleP, the path of pointP’, with

respect to the moving plang is the circle, ~ The coordinates of point8’, C' € ((y) are
denoted byk, which lies in the plane through

P, perpendicular to axis. The diameter of: (rp,2p)(p) = (pecosy +pysing,p.)
is PP,, whereP, is the normal projection of (re, z0)(p) = (cos(2k —1)p,0).  (5)
P to z. Thus, we can regard surfag& ™ as _ _ _

the system of circles in the planes through axis (i) is the radius and(rs(¢), zs(¢)) is the
= with the end points of diameters on (2k-1)-  center of circlec in plane¢(y).

folium ¢?* and circlek, see Fig. 7c,d.

1
The diameters of circleslie on ruled surface R(p) = 5\/(7’0(@ —rp(p))? + p?
with directing linesc?*, k andz. According to ro () + ()
the formula [6, p. 90], the degree of this sur-  rg(p) = /TP
face is:2-2k-2-1—2-1—(2k—1)-2—1-2k = 2k. 2

D=

3.2 Parametric equations of P;*? and 2
Mathematicavisualizations Since the parametric equations of circlén

Let (p.,p,,p.) € R? be the coordinates of plane¢(y) are

pole P and let(2k — 1)-folium is given by B .

eq. (1). Let(r,2), where|r| = /22 + 32, r0) = Rlp)sinb+rslp)

zs(p) = (6)

be the coordinates of the points in plajie), 20) = Rlp)cost + zs(p),

which is given by equationy = =z tan if 0 € [0,2m), (7)
v € [0,7), ¢ # /2, andzx = 0if ¢ = /2,

see Fig. 8.



Figure 9:P2*2 for P(1,0,2) andk = 1,2, 3, 4, respectively in figures a, b, c and d

therefore the parametric equations of surface obtain the implicit equation o2 +* which

P2+ are the following

z(p,0) cos p (R(p)sind + rg(y))
y(p,0) = sinp (R(p)sinb +rs(p))
z(p,0) = R(p)cost + zs(p),

pel0,m), #l0,2r). (8)

Equations (8) enablMathematicavisualiza-
tions of surface®;; *'. See Fig. 9.

3.3 Implicit equation of P2k +2

In plane((u) through axisz, in coordinates
(r, z), the equation of circle is

(r—rs(@)* + (2 = p=/2)* = R(p)?,

¢ €1[0,m). )
From equations (5), by using the formula
(2) and the substitutions:osu = \/ijyQ
sinu = \/:chyQ we obtain the following
T2k_1
TC(SO) - (5172 +y2)2k—1
pT+q
rpi(p) = - (10)

wherer?~1 is given by eq. (4).

Now, we can expresss(¢) and R(y), given
by formulas (6), as the functions ofandy. If
we put these functions and= /z2 + y2 into
equation (9) and multiply it byz? + y?)*, we

can be written in the following form
(22 + ) (@ + 92 + 22)
+ H* (2, y) + HY (2, )2

+ Hy"(z,y) =0, (11)

whereH*(z, y) are homogeneous polynomials
in z andy of degree, given by the formulas:

H* N (z,y) =

— (@® + ) (per + pyy) — (2 + )7
HE¥(2,y) = —p.(2® + yH)*

H3"(z,y) = (pox + pyy) T

2k—1

(12)

3.4 Properties of P22

Proposition 1 The plane at infinity cuts sur-
faceP;? at the absolute conic dE* and the

rays of congruencé,, .

PROOF. In the Cartesian homogeneous coor-
dinates(z : y : z : w), wherew = 0 means
that the point lies in the plane at infinity, the
equation of surfac®;;** takes the form

+H* (2, y)2w + HF(x,y)w? = 0. (13)

Therefore, the intersection ¢?2¢2 and the
plane at infinity splits into the absolute conic,
given by equations? + y? + 2> = 0, w = 0,
and the pair of imaginary lines through the



point (0 : 0 : 1 :0), countedk times, which
are given by equations? + y2)* = 0, w = 0.

It is clear from eq. (3) that curve’* touches
the plane at infinityk times at the absolute
points. Thus(i, hask-ple pair of isotropic
rays through(0:0:1:0) at infinity. O

Proposition 2 Axisz is the2k-ple line of sur-

facePyt?

PROOF. According to [4, p. 251]: If thenth
order surface i3, which passes through the
origin, is given by equation

F(Qf, 2 y) = fm(xv Y, Z) + fm—i—l(x;y? Z) +e
et fn(x>y7z) = 0, where fk:(x>y7z)

(1 < k < n) is homogeneous polynomial of
degreek, then the tangent cone at the point
(0,0,0) is given by equatiorf,,(z, y, z) = 0.

If we move the origin to any point
Zy=(0,0,z2) on axis z, from eq. (11) we
obtain the following equation for the tangent

cone7y, of P32 at pointZ,

(@® +y*)F28 + Hi* (2, )20 + Hy*(z,y) = 0.

(14)
Since it is the homogeneous equation:iand
y of degreek, in the general casg,, always
splits into2k planes through axis. O

There are many possibilities for the type2af

ple singular pointZ, on line z. It depends
on how the homogeneous polynomial from
eg. (14) can be factorized, i. e. how tangent
cone7y, splits (how many real and imaginary
planes, how many coinciding planes, and so
on). For example, for poir®, 7, is given by
equation(p,x + p,y)7*~1 = 0 and, in gen-
eral, splits into2k real and different planes.
But, if the line in planezy which is given
by p.x + p,y = 0 coincides with one of the
tangent lines of?* throughO, P22 has the
pinch pointin O. Pinch points are the points
on multiple line in which two or more tangent
planes coincide.

Proposition 3 SurfacePz? has4(2k — 1)
pinch points on2k-ple axisz (real or com-
plex). Among them one is always the point
at infinity and it is the pinch-point counted
times.

PROOF. The proof thatth order surface with
(n — 2)-ple line always possessds$n — 3)
pinch-points, is given in [8, p. 317]. We
give here only its interpretation for thik-
order case: Every planethrough axesg cuts
Par 2 into the 2k-ple line and one conie
which cuts2k-ple line in two points. These
points are the touching points of plageand
surfaceP2x*2. The correspondence between
the planes of pencik], where corresponding
planes have the same touching point, is the in-
volution of the ordeR(2k — 1), because that
through each touching point of plag@nother
2k —1 tangent planes pass. This involution has
2-2(2k—1) double elements which are the co-
inciding tangent planes through the points on
2k-ple line and their touching points are the
pinch-points ofP2 2,

According to eq. (13), the tangent cone at
point Z5°(0: 0: 1: 0) is given by equation
(22 +y?)* =0, thus Zg° is the pinch-point
countedk times. O

Proposition 4 P32 contains curve?*.

PROOE If z = 0. eq. (11) takes the form
(@? +y? —poa—pyy) (2 +y)F =71) = 0.

Thus, planex = 0 cutsP;;+? through curve
c* and circle with diamete©P’, where P’
is the normal projection of polé on plane
z=0. O

Proposition 5 If pole P lies on axisz, Pay*?
splits into the pair of isotropic planes through
z and2k-order surface.

ProoF If p, =p, =0, eq. (11) takes the
form

(2% +y*) P (x,y,2) =0,

whereP*(z,y, z) is
(xQ + y2)kz—1(x2 + y2 422 pZZ) _ 721
See figures 10 and 11.



Figure 11: Surface®?*, given by equation®?(x,y, 2) = 0, for k = 2, 3,4 and P(0, 0, 2)

Proposition 6 SurfacePs; " has real double  planez = 0. Curvesk andc?* can possess
points out of axis iff p, = 0. There are atthe  real intersection points only in the case when
most2k — 1 and at leastl such real pointson  p, = 0. In this case they havé: intersection

Parte, points, wherek — 1 points coincide witO, 2
points are the absolute points of plane- 0,
PROOE thus only2k — 1 intersection points can lie out
h . pr-ole I he hiah of axisz and be real. Sincekt — 1 is an odd
Except the points okk-ple line z, the high- — nymper, at least one real double point exists
est singularity whichP;,; ™ can possess is a on P22 if p.=0 .
1 4 .

double point. Namely, iP2*? had a higher
multiple point out ofz, the line through that
point which cutsz would cutPzr 2 in more

than2k + 2 points, which is impossible.

If D is the double point oP;;? it is the dou-
ble point of every section oP2 ™ through
D. Thus, circlec in the plane{ through D
and axisz splits into the pair of isotropic lines
throughD. It is the case when the end points
of diameterC P’ coincide, i. e. circle: inter-

2k i . . .
sects curve-, If p. # 0 circle k and curve  gigure 12: Surfac®; with 1 real double point
¢ intersect only into the absolute points of out of its double line

See figures 12 and 13.




Figure 13: Surface®? with 1, 2 and 3 real double points out of their quadruple lines

4. CONCLUSIONS

The objective of this paper is to visualize nu-
merous forms and properties of special class
of surfaces ifE3. Surfaces treated in this pa-
per form only a small subclass Bf*2 which

is the class of thén + 2)th surfaces with-

ple straight line. It may be assumed that the
whole class" could be obtained by inver-
sioni;t? and visualized by the prograktath-
ematica.
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