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ABSTRACT: In this paper, in Euclidean spaceE3, we treat the pedal surfaces of special line
congruencesC1

2k which are of the 1st order and the2kth class. We derive the parametric and
implicit equations of these surfaces which enableMathematicavisualizations and proving some
properties such as their order is2k + 2, they possess one2k-ple straight line and pass through the
absolute conic ofE3. The properties of their singularities, which do not lie on2k-ple line, and of
the pinch points on the2k-ple line, are also shown.
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1. INTRODUCTION
CongruenceC is a double infinite line sys-
tem, i.e. it is the set of lines in the three-
dimensional space (projective, affine or Eu-
clidean) depending on two parameters. Line
z ∈ C is said to be theray of a congruence.
The order of a congruence is the number of
its rays which pass through an arbitrary point;
theclassof a congruence is the number of its
rays which lie in an arbitrary plane.mth order,
nth classcongruence is signedCm

n . A point
is called thesingular pointof a congruence if
∞1 rays pass through it. A plane is called the
singular planeof a congruence if it contains
∞1 rays.

According to [6, p. 64], [10, pp. 1184-1185],
there are only two types of the first order con-
gruences: the first one are the congruences of
nth class and their rays are transversals of one
straight lined andnth order space curvecn

Figure 1: Directing lines ofC1
n

which cuts this straight line inn − 1 points
(see Fig. 1), and the second are congruences
of 3rd class and its rays cut a twisted cubic
twice. The properties of the first order con-
gruences can be found in [1].

In Euclidean spaceE3, the pedal surfaceof
congruenceCm

n with respect topole P is the
locus of the feet of perpendiculars from finite
pointP to the rays of congruenceCm

n , [5].

In [2] we define the transformation of three-
dimensional projective space where corre-
sponding points lie on the rays of congruence
C1

n and are conjugate with respect to proper
quadricΨ (see Fig. 2). This transformation
we called the(n + 2) degree inversionwith
respect to congruenceC1

n and quadricΨ and
signed it byin+2

Ψ
: P

3 → P
3. We proved that it

takes a straight line to the(n + 2) order space

A

i   (A)

Figure 2: Inversion of degreen + 2



curve and a plane to the(n + 2) order surface
which containsn-ple straight line.

The class of such surfaces was elaborated in
detail by Sturm [8, pp. 315-328].

The pedal surface of the first order congruence
C1

n is the image of the plane at infinity given
by in+2

Ψ
, whereΨ is any sphere with center

P . According to the properties ofin+2

Ψ
it was

shown that the pedal surface of congruenceC1
n

is (n+2) order surface withn-ple line straight
lined which passes through the absolute conic
of E3 and the directing curvecn, [2].

2. SPECIAL C1
2k CONGRUENCES

A special class ofC1
n arises if all intersection

pointsDi (see Fig. 1) coincide. In this casecn

is a plane curve with one singular point of the
highest multiplicityn − 1, and lined passes
through this point.

Here we will regard specialC1
n wheren is an

even number, i. e.n = 2k, k ∈ N, and direct-
ing curvec2k is a plane curve with(2k−1)-ple
singular point.

2.1 (2k − 1)-folium

(2k − 1)-folium is curvec2k given by the fol-
lowing polar equation:

r(ϕ) = cos(2k − 1)ϕ, ϕ ∈ [0, π). (1)

Figure 3:(2k − 1)-folium

According to the multiple-angle formula,
cos(2k − 1)ϕ can be displayed as

k
∑

i=0

(−1)iC2k−1

2i (cos ϕ)2k−1−2i(sin ϕ)2i (2)

whereC2k−1

2i is a binomial coefficient.

Therefore, from eq. (1), by using the substi-
tutionsr(ϕ) =

√

x2 + y2, cos ϕ = x√
x2+y2

andsin ϕ = y√
x2+y2

, we obtain the following

implicit equation of(2k − 1)-folium:

(x2 + y2)k − τ 2k−1 = 0, where, (3)

τ 2k−1 =
k

∑

i=0

(−1)iC2k−1

2i x2k−1−2iy2i. (4)

From eq. (3) it is clear that(2k − 1)-folium is
2k-order curvec2k, with (2k − 1)-ple point at
the origin, where2k − 1 tangent lines at it are
given by equationτ 2k−1 = 0, [7, p. 27]. The
line at infinity is thek-ple tangent line ofc2k

which touches it at the absolute points.

2.2 Congruence C1
2k

Let axis z and (2k − 1)-folium c2k in plane
z = 0 be the directing lines of congruenceC1

2k.

Figure 4: Directing lines ofC1
2k for k = 2

All singular points ofC1
2k (the points which

contain∞1 rays of C1
2k) lie on its directing

linesc2k andz. If point C lies on curvec2k and
C 6= O, then the rays ofC1

2k which pass trough
C form pencil of lines(C) in planeζ ∈ [z]
which containsC andz, see Fig. 5a. If point
Z lies on axisz andZ 6= O, then all the lines
which joinZ with the points of curvec2k are
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Figure 5: Singular points and planes ofC1
2k for k = 2.
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Figure 6: Rays ofC1
2k (for k = 2) through non singular points and non singular planes.

the rays ofC1
n. They form2k- degree coneΦ2k

Z

with vertexZ. Axis z is (2k − 1)-ple genera-
trix of Φ2k

Z , see Fig. 5b. The rays through point
O form 2k−1 pencil of lines(O) in the planes
determined by axisz and2k − 1 tangent lines
of c2k atO, and pencil(O) in the plane ofc2k,
see Fig. 5c. Singular planes ofC1

2k (the planes
which contain∞1 rays) are the planes of the
pencil [z] and plane of(2k − 1)-folium, see
Fig. 5c.

Every pointA, which is not the singular point
of C1

2k, determines planeζA ∈ [z] which cuts
c2k in only one pointC beside the origin. Line
AC, which cutsz in one pointZ, is the unique
ray of C1

2k through pointA, see Fig. 6a. If
planeζA contains one of the tangent lines of
c2k atO, then pointsC andZ coincide withO
and lineAO is the unique ray ofC1

2k through
A, see Fig. 6b.

Every planeα which is not the singular plane
of C2

2k, contains2k rays of C1
2k. Planeα

cuts axisz in point Z and curvec2k in points
Cj, j = 1, ..., 2k. Lines ZCj are2k rays of
C1

n in planeα. They are the intersection of
planeα and2k-degree coneΦ2k

Z , and can be
real and different, coinciding or imaginary, see
Fig. 6c.. If α passes through pointO, then
2k − 1 rays are the intersections ofα with the
planes throughz and the tangent lines ofc2k

at O, and one ray lies in the plane ofc2k, see
Fig. 6d.

3. PEDAL SURFACES OF C1
2k

As we mentioned in the Introduction: in Eu-
clidean spaceE3, the pedal surface of congru-
enceC with respect to poleP is the locus of
the feet of perpendiculars from finite pointP
to the rays of congruenceC. According to [2],
the pedal surfaces ofC1

2k is 2k + 2 order sur-
face with2k-ple linez, and we will denote it
P2k+2

2k .
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Figure 7: Construction of circlesc ∈ ζ ∈ [z]

3.1 Construction

In planeζ trough axisz, the rays ofC1
2k form

pencil of lines(C), whereC 6= O is the inter-
section ofζ andc2k. In 2k − 1 planes, deter-
mined by the tangent lines ofc2k atO and axis
z, pointC coincides withO. If finite poleP is
in the general position to the directing lines of
C1

2k, the feet of perpendiculars fromP to the
rays of pencil(C) form circlec with diameter
CP ′, whereP ′ is the orthogonal projection of
P to ζ , see Fig. 7a,b. The proof of this state-
ment is elementary.

For given poleP , the path of pointP ′, with
respect to the moving planeζ , is the circle,
denoted byk, which lies in the plane through
P , perpendicular to axisz. The diameter ofk
is PPz, wherePz is the normal projection of
P to z. Thus, we can regard surfaceP2k+2

2k as
the system of circles in the planes through axis
z with the end points of diameters on (2k-1)-
folium c2k and circlek, see Fig. 7c,d.

The diameters of circlesc lie on ruled surface
with directing linesc2k, k andz. According to
the formula [6, p. 90], the degree of this sur-
face is:2·2k·2·1−2·1−(2k−1)·2−1·2k = 2k.

3.2 Parametric equations of P2k+2

2k and
Mathematicavisualizations

Let (px, py, pz) ∈ R
3 be the coordinates of

pole P and let (2k − 1)-folium is given by
eq. (1). Let(r, z), where |r| =

√

x2 + y2,
be the coordinates of the points in planeζ(ϕ),
which is given by equationy = x tan ϕ if
ϕ ∈ [0, π), ϕ 6= π/2, andx = 0 if ϕ = π/2,
see Fig. 8.

Figure 8

The coordinates of pointsP ′, C ∈ ζ(ϕ) are

(rP ′, zP ′)(ϕ) = (px cos ϕ + py sin ϕ, pz)

(rC , zC)(ϕ) = (cos(2k − 1)ϕ, 0). (5)

R(ϕ) is the radius andS(rS(ϕ), zS(ϕ)) is the
center of circlec in planeζ(ϕ).

R(ϕ) =
1

2

√

(rC(ϕ) − rP ′(ϕ))2 + p2
z

rS(ϕ) =
rC(ϕ) + rP ′(ϕ)

2

zS(ϕ) =
pz

2
. (6)

Since the parametric equations of circlec in
planeζ(ϕ) are

r(θ) = R(ϕ) sin θ + rS(ϕ)

z(θ) = R(ϕ) cos θ + zS(ϕ),

θ ∈ [0, 2π), (7)
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Figure 9:P2k+2

2k for P (1, 0, 2) andk = 1, 2, 3, 4, respectively in figures a, b, c and d

therefore the parametric equations of surface
P2k+1

2k are the following

x(ϕ, θ) = cos ϕ (R(ϕ) sin θ + rS(ϕ))

y(ϕ, θ) = sin ϕ (R(ϕ) sin θ + rS(ϕ))

z(ϕ, θ) = R(ϕ) cos θ + zS(ϕ),

ϕ ∈ [0, π), θ ∈ [0, 2π). (8)

Equations (8) enableMathematicavisualiza-
tions of surfacesP2k+1

2k . See Fig. 9.

3.3 Implicit equation of P2k+2

2k

In planeζ(u) through axisz, in coordinates
(r, z), the equation of circlec is

(r − rS(ϕ))2 + (z − pz/2)2 = R(ϕ)2,

ϕ ∈ [0, π). (9)

From equations (5), by using the formula
(2) and the substitutionscos u = x√

x2+y2
,

sin u = y√
x2+y2

, we obtain the following

rC(ϕ) =
τ 2k−1

√

(x2 + y2)2k−1

rP ′(ϕ) =
p x + qy
√

x2 + y2
(10)

whereτ 2k−1 is given by eq. (4).

Now, we can expressrS(ϕ) andR(ϕ), given
by formulas (6), as the functions ofx andy. If
we put these functions andr =

√

x2 + y2 into
equation (9) and multiply it by(x2 + y2)k, we

obtain the implicit equation ofP2k+2

2k which
can be written in the following form

(x2 + y2)k(x2 + y2 + z2)

+ H2k+1(x, y) + H2k
1 (x, y)z

+ H2k
2 (x, y) = 0, (11)

whereH i(x, y) are homogeneous polynomials
in x andy of degreei, given by the formulas:

H2k+1(x, y) =

− (x2 + y2)k(pxx + pyy) − (x2 + y2)τ 2k−1

H2k
1 (x, y) = −pz(x

2 + y2)k

H2k
2 (x, y) = (pxx + pyy)τ 2k−1. (12)

3.4 Properties of P2k+2

2k

Proposition 1 The plane at infinity cuts sur-
faceP2k+2

2k at the absolute conic ofE3 and the
rays of congruenceC1

2k.

PROOF: In the Cartesian homogeneous coor-
dinates(x : y : z : w), wherew = 0 means
that the point lies in the plane at infinity, the
equation of surfaceP2k+2

2k takes the form

(x2 + y2)y(x2 + y2 + z2) + H2k+1(x, y)w

+H2k
1 (x, y)zw + H2k

2 (x, y)w2 = 0. (13)

Therefore, the intersection ofP2k+2

2k and the
plane at infinity splits into the absolute conic,
given by equationsx2 + y2 + z2 = 0, w = 0,
and the pair of imaginary lines through the
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point (0 : 0 : 1 : 0), countedk times, which
are given by equations(x2 + y2)k = 0, w = 0.

It is clear from eq. (3) that curvec2k touches
the plane at infinityk times at the absolute
points. Thus,C1

2k hask-ple pair of isotropic
rays through(0 :0 :1 :0) at infinity. �

Proposition 2 Axisz is the2k-ple line of sur-
faceP2k+2

2k .

PROOF: According to [4, p. 251]: If thenth
order surface inE3, which passes through the
origin, is given by equation
F (x, z, y) = fm(x, y, z) + fm+1(x, y, z) + · · ·
· · · + fn(x, y, z) = 0, where fk(x, y, z)
(1 ≤ k ≤ n) is homogeneous polynomial of
degreek, then the tangent cone at the point
(0, 0, 0) is given by equationfm(x, y, z) = 0.

If we move the origin to any point
Z0 = (0, 0, z0) on axis z, from eq. (11) we
obtain the following equation for the tangent
coneTZ0

of P2k+2

2k at pointZ0

(x2 + y2)kz2

0 + H2k
1 (x, y)z0 + H2k

2 (x, y) = 0.
(14)

Since it is the homogeneous equation inx and
y of degree2k, in the general caseTZ0

always
splits into2k planes through axisz. �

There are many possibilities for the type of2k-
ple singular pointZ0 on line z. It depends
on how the homogeneous polynomial from
eq. (14) can be factorized, i. e. how tangent
coneTZ0

splits (how many real and imaginary
planes, how many coinciding planes, and so
on). For example, for pointO, TO is given by
equation(pxx + pyy)τ 2k−1 = 0 and, in gen-
eral, splits into2k real and different planes.
But, if the line in planexy which is given
by pxx + pyy = 0 coincides with one of the
tangent lines ofc2k throughO, P2k+2

2k has the
pinch pointin O. Pinch points are the points
on multiple line in which two or more tangent
planes coincide.

Proposition 3 SurfaceP2k+2

2k has4(2k − 1)
pinch points on2k-ple axisz (real or com-
plex). Among them one is always the point
at infinity and it is the pinch-point countedk
times.

PROOF: The proof thatnth order surface with
(n − 2)-ple line always possesses4(n − 3)
pinch-points, is given in [8, p. 317]. We
give here only its interpretation for this2k-
order case: Every planeζ through axesz cuts
P2k+2

2k into the 2k-ple line and one conicc
which cuts2k-ple line in two points. These
points are the touching points of planeζ and
surfaceP2k+2

2k . The correspondence between
the planes of pencil[z], where corresponding
planes have the same touching point, is the in-
volution of the order2(2k − 1), because that
through each touching point of planeζ another
2k−1 tangent planes pass. This involution has
2·2(2k−1) double elements which are the co-
inciding tangent planes through the points on
2k-ple line and their touching points are the
pinch-points ofP2k+2

2k .

According to eq. (13), the tangent cone at
point Z∞

0 (0 :: 0 :: 1 :: 0) is given by equation
(x2 + y2)k = 0, thus Z∞

0 is the pinch-point
countedk times. �

Proposition 4 P2k+2

2k contains curvec2k.

PROOF: If z = 0. eq. (11) takes the form

(x2+y2−pxx−pyy)((x2+y2)k−τ 2k+1) = 0.

Thus, planez = 0 cutsP2k+2

2k through curve
c2k and circle with diameterOP ′, whereP ′

is the normal projection of poleP on plane
z = 0. �

Proposition 5 If poleP lies on axisz, P2k+2

2k

splits into the pair of isotropic planes through
z and2k-order surface.

PROOF: If px = py = 0, eq. (11) takes the
form

(x2 + y2)P 2k(x, y, z) = 0,

whereP 2k(x, y, z) is

(x2 + y2)k−1(x2 + y2 + z2 − pzz) − τ 2k−1. �

See figures 10 and 11.
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Figure 10: SurfacesP2k, given by equationsP 2k(x, y, z) = 0, for k = 2, 3, 4 andP (0, 0, 0)

Figure 11: SurfacesP2k, given by equationsP 2k(x, y, z) = 0, for k = 2, 3, 4 andP (0, 0, 2)

Proposition 6 SurfaceP2k+2

2k has real double
points out of axisz iff pz = 0. There are at the
most2k − 1 and at least1 such real points on
P2k+2

2k .

PROOF:

Except the points of2k-ple line z, the high-
est singularity whichP2k+2

2k can possess is a
double point. Namely, ifP2k+2

2k had a higher
multiple point out ofz, the line through that
point which cutsz would cutP2k+2

2k in more
than2k + 2 points, which is impossible.

If D is the double point ofP2k+2

2k it is the dou-
ble point of every section ofP2k+2

2k through
D. Thus, circlec in the planeζ throughD
and axisz splits into the pair of isotropic lines
throughD. It is the case when the end points
of diameterCP ′ coincide, i. e. circlek inter-
sects curvec2k. If pz 6= 0 circle k and curve
c2k intersect only into the absolute points of

planez = 0. Curvesk and c2k can possess
real intersection points only in the case when
pz = 0. In this case they have4k intersection
points, where2k−1 points coincide withO, 2
points are the absolute points of planez = 0,
thus only2k−1 intersection points can lie out
of axisz and be real. Since2k − 1 is an odd
number, at least one real double point exists
onP2k+2

2k , if pz=0. �

See figures 12 and 13.

Figure 12: SurfaceP4
2 with 1 real double point

out of its double line.
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Figure 13: SurfacesP6
4 with 1, 2 and 3 real double points out of their quadruple lines

4. CONCLUSIONS

The objective of this paper is to visualize nu-
merous forms and properties of special class
of surfaces inE3. Surfaces treated in this pa-
per form only a small subclass ofP

n+2
n which

is the class of the(n + 2)th surfaces withn-
ple straight line. It may be assumed that the
whole classPn+2

n could be obtained by inver-
sionin+2

Ψ
and visualized by the programMath-

ematica..
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