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Abstract.
This paper is a short overview of the deducing of the pedal surfaces Pn+2

n for the first order line
congruences C1

n. Pn+2
n pass through the absolute conic of Euclidean space and are (n+2)-order

surfaces with n-ple straight line. We described their construction and derived their parametric
equations. These equations enable Mathematica visualizations of Pn+2

n and they are given in
two examples (P6

4 and P2k+2
2k ).
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1 INTRODUCTION

A congruence C is a double infinite line system, i.e. it is the set of lines in a three-dimensional
space (projective, affine or Euclidean) depending on two parameters. A line l ∈ C is said to
be a ray of the congruence. The order of a congruence is the number of its rays which pass
through an arbitrary point; the class of a congruence is the number of its rays which lie in an
arbitrary plane. mth order, nth class congruence is denoted Cm

n . A point is the singular point of
a congruence if∞1 rays (1-parametrically infinite lines) pass through it. A plane is the singular
plane of a congruence if it contains ∞1 rays.

In Euclidean space E3, the pedal surface of a congruence C with respect to a pole P is the locus
of the feet of perpendiculars from a point P to the rays of a congruence C. If C is mth order nth
class congruence, the order of its pedal surface for the pole P is 2m + n, [6].

1PhD. Sonja Gorjanc, Faculty of Civil Engineering, Kačićeva 26, 10000 Zagreb, Croatia
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2 PEDAL SURFACES OF FIRST ORDER LINE CONGRUENCES

2.1 Directing lines of C1
n

According to [7, p. 64], [10, pp. 1184-1185], there are only two types of the first order congru-
ences. The first one are nth class congruences and their rays are transversals of one straight line
d and one nth order space curve cn which cuts this straight line in n − 1 points (see Fig. 1a).
The intersection points of d and cn can be the multiple points of cn (with the highest multiplicity
n−2) or some of them can coincide (there are cases when d is the tangent line of cn, the tangent
at inflection, etc.). The second type are only 3rd class congruences and its rays cut a twisted
cubic twice. The properties of the first order congruences (the construction of its rays, singular
points and planes, focal properties, etc.) can be found in [1].

Figure 1: The rays of C1
n are transversals of d and cn (a). The singular points of C1

n lie on its
directing lines: for C ∈ cn they form a pencil of lines in the plane through d (b) and for D ∈ d
they form an nth degree cone with the vertex D (c). The singular planes of C1

n are the planes δ
through d.

2.2 Construction of pedal surface Pn+2
n

In [2] the authors defined one transformation of three-dimensional projective space where cor-
responding points lie on the rays of the 1st order, nth class congruence C1

n and are conjugate
with respect to some proper quadric Ψ. This transformation, called (n + 2)-degree inversion,
maps a straight line to an (n+2)-order space curve and a plane to an (n+2)-order surface which
contains n-ple straight line. According to [2], the pedal surfaces of the first type congruence
C1

n with respect to a pole P is the image of the plane at infinity given by the (n + 2)-degree
inversion with respect to C1

n and any sphere with the center P . Thus, it is an (n + 2)-order
surface with n-ple straight line d and contains the absolute conic. It will be denoted Pn+2

n .



It is clear that any plane through the n-ple line of an (n + 2)-order surface cuts this surface in
its n-ple line and one conic. If the surface contains the absolute conic, this conic is a circle.

In any plane δ trough the directing straight line d the rays of C1
n form the pencil of lines (C),

where a point C /∈ d is the intersection of the plane δ and the directing curve cn [1], see Fig. 2a.
If a pole P is in the general position to the directing lines of a congruence C1

n, the feet of
perpendiculars from P to the rays of the pencil (C) form the circle c with the diameter CP ′,
where P ′ is the orthogonal projection of P to δ, see Fig. 2b. The proof of this statement is
elementary.

For given pole P , the path of the point P ′ is the circle k which lies in the plane through P
perpendicular to d. The diameter of k is PPd, where Pd is the normal projection of P to d,
see Fig. 2c. Thus, we can regard the pedal surface Pn+2

n as the system of circles in the planes
through the n-ple line d with the end points of diameters on the curve cn and the circle k.

Figure 2: One system of curves on Pn+2
n can be construct as the circles in the planes through d

with the end points of diameters on cn and k.

2.3 Parametric equations of Pn+2
n

Let the directing straight line of C1
n be the axis z, and let the directing curve cn be given by the

following parametrization:

rcn(ϕ) = (xcn(ϕ), ycn(ϕ), zcn(ϕ)), xcn , ycn , zcn : [0, π) → R. (1)

Let (px, py, pz) be the coordinates of the pole P .

Let (r, z), where |r| =
√

x2 + y2, be the coordinates of the points in the plane δ(ϕ), which is
given by equation y = x tan ϕ if ϕ ∈ [0, π), ϕ 6= π/2, and x = 0 if ϕ = π/2, see Fig. 3.



Figure 3: (r, z) are Cartesian coordinates in the plane δ(ϕ).

The coordinates of points C, P ′ ∈ δ(ϕ) are

rC(ϕ) =
√

xcn(ϕ)2 + ycn(ϕ)2

zC(ϕ) = zcn(ϕ)

rP ′(ϕ) = px cos ϕ + py sin ϕ

zP ′(ϕ) = pz. (2)

R(ϕ) is the radius and S(rS(ϕ), zS(ϕ)) is the center of the circle c in the plane δ(ϕ).

R(ϕ) =

√
(rC(ϕ)− rP ′(ϕ))2 + (zC(ϕ)− pz)2

2

rS(ϕ) =
rC(ϕ) + rP ′(ϕ)

2

zS(ϕ) =
zC(ϕ) + pz

2
(3)

Since the parametric equations of the circle c in the plane δ(u) are

r(θ) = R(ϕ) sin θ + rS(ϕ)

z(θ) = R(ϕ) cos θ + zS(ϕ), θ ∈ [0, 2π), (4)

therefore the parametric equations of the surface Pn+2
n are the following

x(θ, ϕ) = cos ϕ (R(ϕ) sin θ + rS(ϕ))

y(θ, ϕ) = sin ϕ (R(ϕ) sin θ + rS(ϕ))

z(θ, ϕ) = R(ϕ) cos θ + zS(ϕ), ϕ ∈ [0, π), θ ∈ [0, 2π). (5)



3 SPECIAL SEXTICS WITH QUADRUPLE LINE

Let the directing lines of a congruence C be the axis z and Viviani’s curve (see Fig. 4a) which
is the intersection of the following sphere and cylinder:

(x +
√

2)2 + y2 + (z +
√

2)2 = 4, (x + z +
√

2)2 + 2y2 = 2. (6)

From equations (6), by using the substitution y → x tan u, we obtain the following parametriza-
tion of Viviani’s curve:

r(ϕ) = 4
√

2
1 + 3 cos 2ϕ

(3 + cos 2ϕ)2

(
− 2(cos ϕ)2,− sin 2ϕ, (sin ϕ)2

)
, ϕ ∈ [0, π). (7)

Figure 4: The rays of C1
4 are transversals of the axis z and Viviani’s curve given by eq. (7).

The axis z cuts Viviani’s curve in two points, S1 = (0, 0, 0) and S2 = (0, 0,−2
√

2), where S1

is the double point of Viviani’s curve. Since Viviani’s curve is the 4th order space curve c4 and
the axis z cuts it in 3 points, then the transversals of z and c4 form the 1st order and 4th class
congruence. The directing lines and some rays of C1

4 are shown in Fig. 4b.

According to [2], the pedal surfaces of this C1
4 are 6th order surfaces (sextics) with a quadruple

line through the axis z. In this case the coordinates rC and zC from eq. 2 are:

rC(ϕ) = = −8
√

2
(1 + 3 cos 2ϕ) cos ϕ

(3 + cos 2ϕ)2

zC(ϕ) = 4
√

2
(1 + 3 cos 2ϕ) sin2 ϕ

(3 + cos 2ϕ)2
. (8)

From these equations, eq. (3) and eq. (5) we obtain the parametric equations of P6
4 which

depend only on the coordinates of a pole P and enable Mathematica visualizations of P6
4 .

Some examples are given in Fig. 5 and Fig. 6.



Figure 5: Three pedal surfaces of C1
4 with respect to the poles (1, 1, 1), (−5, 0, 0) and (0,−3, 0)

are shown in figure a, b and c, respectively. The directing lines of C1
4 and the poles are pointed

out. Each surface is viewed from two different viewpoints.

In [3] we derived the implicit equation of P6
4 and studied the properties of their singularities.

The following propositions are proved:

• The surface P6
4 has a quintuple point on the axis z iff the pole P lies on the axis z. In this

case it is the unique quintuple point of P6
4 . For different positions of P , we obtained five

types of the fifth degree tangent cone at quintuple point.

• The surface P6
4 has twelve pinch-points on the quadruple line z (real or complex). There

are six types of such points.

• The surface P6
4 has at least one real double point out of z iff the pole P lies on one 5th

degree ruled surface. It has exactly two real double points out of z iff the pole P lies on
the part of one parabola.



Figure 6: If the pole P lies on axis z, all circles c pass through it and P is the quintuple point of
P6

4 (case a for P (0, 0, 0). If the pole P lies on Viviani’s curve, the circle c through it splits into
the isotropic lines in the plane δ trough P and P is the double point of P6

4 (case b for rP (0◦)
and case c for rP (110◦)).

4 PEDAL SURFACES P2k+2
2k

A special class of C1
n arises if all intersection points of the directing lines d and cn coincide. In

this case cn is a plane curve with one singular point of the highest multiplicity n− 1, and a line
d passes through this point. Here we will regard a special C1

n where n is an even number and a
directing curve c2k is a (2k − 1)-folium given by the following polar equation:

r(ϕ) = cos(2k − 1)ϕ, ϕ ∈ [0, π). (9)

Figure 7: (2k − 1)-foliums for k = 1, 2, 3, 4 are shown in figures a, b, c and d, respectively.



According to the multiple-angle formula, cos(2k − 1)ϕ can be displayed as

k∑
i=0

(−1)iC2k−1
2i (cos ϕ)2k−1−2i(sin ϕ)2i (10)

where C2k−1
2i is a binomial coefficient. Therefore, from eq. (9), by using the substitutions r(ϕ) =√

x2 + y2, cos ϕ = x√
x2+y2

and sin ϕ = y√
x2+y2

, we obtain the following implicit equation of

(2k − 1)-folium:

(x2 + y2)k − τ 2k−1 = 0, where τ 2k−1 =
k∑

i=0

(−1)iC2k−1
2i x2k−1−2iy2i. (11)

From eq. (11) it is clear that (2k − 1)-folium is 2k-order curve c2k, with (2k − 1)-ple point at
the origin, where 2k − 1 tangent lines at it are given by equation τ 2k−1 = 0, [8, p. 27].

Let the axis z and (2k−1)-folium c2k in the plane z = 0 be the directing lines of the congruence
C1

2k (see Fig. 8a). The pedal surfaces of this congruence is a (2k + 2)-order surface with 2k-ple
axis z.

If (px, py, pz) ∈ R3 are the coordinates of a pole P , then the diameters CP ′ of the circles
c ⊂ δ(ϕ) (see Fig. 8b) are determined by the following coordinates:

C = (cos(2k − 1)ϕ, 0), P ′ = (px cos ϕ + py sin ϕ, pz). (12)

Figure 8: The directing lines of C1
2k for k = 2 (a), and the circle c ⊂ δ which lies on the pedal

surface of C1
2k.

Now, from eq. (3) and eq. (5) we obtain the parametric equations of P2k+2
2k which depend on

the coordinates of a pole P and the number k which determines the folium c2k. They enable
Mathematica visualizations of P2k+2

2k which are shown in Fig. 9.



Figure 9: P2k+2
2k for P (1, 0, 2) and k = 1, 2, 3, 4 are shown in figures a, b, c and d, respectively.

These surfaces are elaborated in detail in [4]. Here we point out only one interesting property:
If the pole P lies on the axis z, P2k+2

2k splits into the pair of isotropic planes through z and a
2k-order surface which is given by the following equation

P 2k(x, y, z) = (x2 + y2)k−1(x2 + y2 + z2 − pzz)− τ 2k−1 = 0. (13)

Figure 10: P2k
2k−2 for P (0, 0, 2) given by equation P 2k(x, y, z) = 0 for k = 2, 3, 4 are shown in

figures a, b and c, respectively.



Figure 11: P2k
2k−2 for P (0, 0, 0) given by equation P 2k(x, y, z) = 0 for k = 2, 3, 4 are shown in

figures a, b and c, respectively.
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