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PEDAL SURFACES OF FIRST ORDER LINE CONGRUENCES

Sonja Gorjanc!

Abstract.

This paper is a short overview of the deducing of the pedal surfaces P2 for the first order line
congruences C}. P2 pass through the absolute conic of Euclidean space and are (n+2)-order
surfaces with n-ple straight line. We described their construction and derived their parametric
equations. These equations enable Mathematica visualizations of P2 and they are given in

two examples (P and Pay ).
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1 INTRODUCTION

A congruence C is a double infinite line system, i.e. it is the set of lines in a three-dimensional
space (projective, affine or Euclidean) depending on two parameters. A line [ € C is said to
be a ray of the congruence. The order of a congruence is the number of its rays which pass
through an arbitrary point; the class of a congruence is the number of its rays which lie in an
arbitrary plane. mth order, nth class congruence is denoted C;". A point is the singular point of
a congruence if co! rays (1-parametrically infinite lines) pass through it. A plane is the singular
plane of a congruence if it contains co! rays.

In Euclidean space [E3, the pedal surface of a congruence C with respect to a pole P is the locus
of the feet of perpendiculars from a point P to the rays of a congruence C. If C is mth order nth
class congruence, the order of its pedal surface for the pole P is 2m + n, [6].
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2 PEDAL SURFACES OF FIRST ORDER LINE CONGRUENCES

2.1 Directing lines of C}

According to [7, p. 64], [10, pp. 1184-1185], there are only two types of the first order congru-
ences. The first one are nth class congruences and their rays are transversals of one straight line
d and one nth order space curve ¢” which cuts this straight line in n — 1 points (see Fig. 1a).
The intersection points of d and ¢" can be the multiple points of ¢ (with the highest multiplicity
n — 2) or some of them can coincide (there are cases when d is the tangent line of ¢”, the tangent
at inflection, etc.). The second type are only 3rd class congruences and its rays cut a twisted
cubic twice. The properties of the first order congruences (the construction of its rays, singular
points and planes, focal properties, etc.) can be found in [1].

b

Figure 1: The rays of C] are transversals of d and ¢™ (a). The singular points of C}! lie on its
directing lines: for C' € ¢" they form a pencil of lines in the plane through d (b) and for D € d
they form an nth degree cone with the vertex D (c). The singular planes of C! are the planes 4
through d.

2.2 Construction of pedal surface P>

In [2] the authors defined one transformation of three-dimensional projective space where cor-
responding points lie on the rays of the 1st order, nth class congruence C} and are conjugate
with respect to some proper quadric W. This transformation, called (n + 2)-degree inversion,
maps a straight line to an (n-+2)-order space curve and a plane to an (n+-2)-order surface which
contains n-ple straight line. According to [2], the pedal surfaces of the first type congruence
C! with respect to a pole P is the image of the plane at infinity given by the (n + 2)-degree
inversion with respect to C! and any sphere with the center P. Thus, it is an (n + 2)-order
surface with n-ple straight line d and contains the absolute conic. It will be denoted P72,
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It is clear that any plane through the n-ple line of an (n + 2)-order surface cuts this surface in
its n-ple line and one conic. If the surface contains the absolute conic, this conic is a circle.

In any plane ¢ trough the directing straight line d the rays of C! form the pencil of lines (C'),
where a point C' ¢ d is the intersection of the plane § and the directing curve ¢" [1], see Fig. 2a.
If a pole P is in the general position to the directing lines of a congruence C!, the feet of
perpendiculars from P to the rays of the pencil (C') form the circle ¢ with the diameter C' P/,
where P’ is the orthogonal projection of P to ¢, see Fig. 2b. The proof of this statement is
elementary.

For given pole P, the path of the point P’ is the circle & which lies in the plane through P
perpendicular to d. The diameter of k is PP,, where P, is the normal projection of P to d,
see Fig. 2c. Thus, we can regard the pedal surface P"*?2 as the system of circles in the planes
through the n-ple line d with the end points of diameters on the curve ¢ and the circle &.

//( L///(

Figure 2: One system of curves on P *2 can be construct as the circles in the planes through d
with the end points of diameters on ¢” and k.

2.3 Parametric equations of P72

Let the directing straight line of C! be the axis z, and let the directing curve c" be given by the
following parametrization:

Ien (90) = (xc” (90)7 Yen (gp), Zen (90))’ Leny Yeny Zen [07 7T) — R (1)

Let (ps, py, p-) be the coordinates of the pole P.

Let (r, z), where |r| = /22 + y?2, be the coordinates of the points in the plane 6(y), which is
given by equation y = xtan if ¢ € [0,7), ¢ # 7/2,and z = 0 if p = 7/2, see Fig. 3.
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3(p)

Figure 3: (r, z) are Cartesian coordinates in the plane ().

The coordinates of points C, P’ € 6(p) are

VT (9)? + yer (0)?

re(p) =

zo(p) = zen()

rp(p) = pucosp+p,sing

zp(p) = p.. (2)

R(¢) is the radius and S(rs(p), zs(¢)) is the center of the circle ¢ in the plane §(p).

V(re(e) —rp(9)? + (zc(e) — p:)”

R(p) = 5
re(p) = Tc(@)‘;TP'(@)
wo(g) = DL )

Since the parametric equations of the circle ¢ in the plane §(u) are

r(0) = R(p)sinfd+rs(p)
2(0) = R(p)cosf+ zs(p), 6€][0,2m), 4)

therefore the parametric equations of the surface P72 are the following

z(0,p) = cosp(R(p)sinbd +rs(p))
y(0.0) = sinp(R(p)sing +rs(y))
2(0,p) = R(p)cosb+ zs(p), e € [0,m), 0 €l0,2m). 5)
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3 SPECIAL SEXTICS WITH QUADRUPLE LINE

Let the directing lines of a congruence C be the axis z and Viviani’s curve (see Fig. 4a) which
is the intersection of the following sphere and cylinder:

T+ V22 + 2+ (2 + V2P =4, (r+z2+V2)+27 =2 (6)

From equations (6), by using the substitution y — x tan u, we obtain the following parametriza-
tion of Viviani’s curve:

1+ 3cos2¢p 9 _ ) 9
r(p) = 42 W (— 2(cos ), — sin 2¢p, (sin ) ), pel0,m). (7

a b

Figure 4: The rays of C} are transversals of the axis z and Viviani’s curve given by eq. (7).

The axis z cuts Viviani’s curve in two points, S; = (0,0,0) and Sy = (0,0, —2\/5), where S
is the double point of Viviani’s curve. Since Viviani’s curve is the 4th order space curve ¢ and
the axis z cuts it in 3 points, then the transversals of z and ¢* form the 1st order and 4th class
congruence. The directing lines and some rays of C; are shown in Fig. 4b.

According to [2], the pedal surfaces of this C; are 6th order surfaces (sextics) with a quadruple
line through the axis z. In this case the coordinates ¢ and z¢ from eq. 2 are:

33 (1 4+ 3cos2yp)cosp

rele) = =- (3 4 cos 2¢p)?
B (14 3cos2¢p)sin® ¢
ze(p) = 4v2 (3+cos2p)? ®)

From these equations, eq. (3) and eq. (5) we obtain the parametric equations of P§ which
depend only on the coordinates of a pole P and enable Mathematica visualizations of P?.
Some examples are given in Fig. 5 and Fig. 6.
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a b c

Figure 5: Three pedal surfaces of C; with respect to the poles (1,1, 1), (—5,0,0) and (0, —3,0)
are shown in figure a, b and ¢, respectively. The directing lines of C; and the poles are pointed
out. Each surface is viewed from two different viewpoints.

In [3] we derived the implicit equation of P? and studied the properties of their singularities.
The following propositions are proved:

e The surface P} has a quintuple point on the axis z iff the pole P lies on the axis z. In this
case it is the unique quintuple point of P¢. For different positions of P, we obtained five
types of the fifth degree tangent cone at quintuple point.

e The surface P?¢ has twelve pinch-points on the quadruple line 2 (real or complex). There
are six types of such points.

e The surface P} has at least one real double point out of z iff the pole P lies on one 5th
degree ruled surface. It has exactly two real double points out of z iff the pole P lies on
the part of one parabola.
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Figure 6: If the pole P lies on axis z, all circles c pass through it and P is the quintuple point of
PS¢ (case a for P(0,0,0). If the pole P lies on Viviani’s curve, the circle ¢ through it splits into
the isotropic lines in the plane ¢ trough P and P is the double point of P? (case b for rp(0°)
and case ¢ for rp(110°)).

4 PEDAL SURFACES P32

A special class of C! arises if all intersection points of the directing lines d and ¢” coincide. In
this case c" is a plane curve with one singular point of the highest multiplicity n — 1, and a line
d passes through this point. Here we will regard a special C! where n is an even number and a
directing curve c?* is a (2k — 1)-folium given by the following polar equation:

r(¢) = cos(2k — 1)y, ¢ € [0,7). )
@
0<€ )1' >.1 %. 1 %%1
a b c d

Figure 7: (2k — 1)-foliums for k = 1,2, 3,4 are shown in figures a, b, ¢ and d, respectively.
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According to the multiple-angle formula, cos(2k — 1)y can be displayed as

k
D (—1)'C3F (cos )1 (sin ) (10)

i=0

where C5#~* is a binomial coefficient. Therefore, from eq. (9), by using the substitutions 7(¢) =
V2 4+ y? cosp = \/szyz and sin p = \/mg—ﬂﬁ’ we obtain the following implicit equation of
(2k — 1)-folium:

k
(22 + y2)F — 72671 = 0, where 721 = Z(—l)ngfflxzk_l_Qiy%. (11)
i=0

From eq. (11) it is clear that (2k — 1)-folium is 2k-order curve ¢?*, with (2k — 1)-ple point at
the origin, where 2k — 1 tangent lines at it are given by equation 72*~! = 0, [8, p. 27].

Let the axis z and (2k — 1)-folium ¢?* in the plane z = 0 be the directing lines of the congruence
Ca. (see Fig. 8a). The pedal surfaces of this congruence is a (2k + 2)-order surface with 2k-ple
axis z.

If (ps,py,p2) € R3 are the coordinates of a pole P, then the diameters C'P’ of the circles
¢ C () (see Fig. 8b) are determined by the following coordinates:

C = (cos(2k — 1),0), P’ = (pcosp + p,sing,p.). (12)

Figure 8: The directing lines of C3, for k& = 2 (a), and the circle ¢ C ¢ which lies on the pedal
surface of Cy;..

Now, from eq. (3) and eq. (5) we obtain the parametric equations of 7322,5“ which depend on
the coordinates of a pole P and the number k& which determines the folium c**. They enable

Mathematica visualizations of 7322,'5“ which are shown in Fig. 9.
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Figure 9: ’P22,f+2 for P(1,0,2) and k = 1,2, 3,4 are shown in figures a, b, ¢ and d, respectively.

These surfaces are elaborated in detail in [4]. Here we point out only one interesting property:
If the pole P lies on the axis z, 7322,]:+2 splits into the pair of isotropic planes through z and a
2k-order surface which is given by the following equation

PH(z,y,2) = (@2 + ") (@ +y P+ 22 —p2) — 7 =0 (13)

Figure 10: P2k, for P(0,0,2) given by equation P (x,y,2) = 0 for k = 2, 3, 4 are shown in
figures a, b and c, respectively.
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b

Figure 11: 7322,’;72 for P(0,0,0) given by equation P?*(x,y, 2) = 0 for k = 2, 3, 4 are shown in
figures a, b and c, respectively.
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