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136 S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : :Salmon [7] considered quartics with a nodal line as a special class of quartics with nodalcurves. According to [7, p. 217], the general equation of these surfaces in the homogeneousCartesian coordinates (x : y : z : w) may be written asu4 + z u3 + w u3 + z2 t2 + z v u2 + w2 v2 = 0(1)where ui, vi, ti are homogeneous polynomials in x and y of order i, and the z-axis is a nodalline. Merely in view of the variety of u2, v2, t2 Salmon indicated some of the cases whichwould need to be considered in the complete classi�cation of quartics with a nodal line [7,p. 217].3 Quartics through the absolute conic and with a nodal lineWe do not intend to give here a complete list of di�erent kinds of these surfaces, but wemerely indicate the �rst step towards their complete classi�cation.Lemma 1 In homogeneous Cartesian coordinates (x : y : z : w) the general equations of theintersection between the plane at in�nity and the quartics through the absolute conic andwith the z-axis as nodal line are as follows:(x2 + y2 + z2)(a2x2 � b2y2) = 0; w = 0(x2 + y2 + z2)(ax� by)2 = 0; w = 0(2) (x2 + y2 + z2)(a2x2 + b2y2) = 0; w = 0Proof: Since the point at in�nity of the z-axis is a nodal point of the surface, the plane atin�nity cuts the surface along the absolute conic and two lines through the point (0 : 0 : 1 : 0).Therefore, the formulas (2) are direct consequences of the following facts:- (x2 + y2 + z2) = w = 0 are the equations of the absolute conic, and- a2x2 � b2y2 = 0 or (ax � by)2 = 0 or a2x2 + b2y2 = 0, each combined with w = 0,are the equations of two real, of one two-fold or of a pair of imaginary lines through thepoint (0 : 0 : 1 : 0).In analogy to the a�ne types of conics we can call a quartic passing through the absoluteconic and with a nodal line hyperbolic, parabolic or elliptic, if it has two, one or no real linesat in�nity, respectively.Theorem 1 Equation (1) de�nes a quartic through the absolute conic and with the z-axisas a nodal if and only ifu4 = (x2 + y2)t2; u3 = 0 and t2 = a2x2 � b2y2 or t2 = (ax� by)2 or t2 = a2x2 + b2y2:Proof: For w = 0 equ. (1) takes the form u4 + zv3 + z2t2 = 0. New we apply Lemma 1.4 Pedal surfaces of (1,2)-congruencesThe locus of the feet of perpendiculars drawn from any �xed �nite point P , called the pole,to the rays of an (n;m)-congruence is called the pedal surface of this congruence.



S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : : 1374.1 (1,2)-congruencesAccording to [9, p. 37] each 1st order and 2nd class congruence of lines K12 may be regarded asthe system of lines meeting two directing curves, a conic c and a straight line d with only onecommon point O. In two planes (the plane of the conic c and the plane spanned by the line dand the tangent of the conic c at O) the rays of the congruence form two pencils of lines (O).All other lines of the bundle of lines fOg are not regarded as the rays of the congruence.A point is called a singular point of a congruence if 11 rays are passing through it.Similarly, a plane is called a a singular plane of a congruence if it contains11 rays [4, p. 262].The singular points of K12(c; d;O) lie on the conic c or on the line d, and the singular planesof K12(c; d;O) are the planes of the pencil [d] and the plane of the conic c [1, p. 10].According to the intersection of a congruence with the plane at in�nity the congruencesK12(c; d;O) may be classi�ed into six types:I: c is an ellipse, d is a �nite line, O is a �nite point. K12(c; d;O) has a pair of imaginaryrays through one real singular point at in�nity.II: c is a parabola, d is a �nite line, O is a �nite point. K12(c; d;O) has coinciding raysthrough two real singular points at in�nity.III: c is a hyperbola, d is a �nite line, O is a �nite point. K12(c; d;O) has two real raysthrough three real singular points at in�nity.IV: c is a parabola, d1 is a line at in�nity, O1 is a point at in�nity. K12(c; d1; O1) has thesingular line d1 and the pencil of rays (O1) at in�nity.V: c is a hyperbola, d1 is a line at in�nity, O1 is a point at in�nity. K12(c; d1; O1) has thesingular line d1 and the pencil of rays (R1) at in�nity, where R1 2 c and R1 6= O1.VI: c1 is a conic at in�nity, d is a �nite line, O1 is a point at in�nity. K12(c1; d;O1) hasthe singular conic c1 and the pencil of rays (O1) at in�nity.4.2 Quartic inversionThe quartic inversion i	 : P 3 ! P 3, de�ned in [2], is a transformation of the projective spaceinto itself where corresponding points A and i	(A) are conjugate with respect to a regularquadric 	 and lying on the rays of a congruence K12(c; d;O).This is a Cremona transformation with singular points on the curves d, c and e6, wheree6 is the curve of contact between the quadric 	 and a 6th order ruled surface which is theintersection of K12(c; d;O) and the complex of lines tangent to 	 [2].In [2, p. 191-194] it is proved that for every plane � the image i	(�) is a quartic with anodal line d, which contains c and e6.There are two special cases where this quartic is reducible:1. If � is any plane of the pencil [d], then i	(�) splits into the cubic surface i	(d) and theplane �.2. If � is the plane of the conic c, then i	(�) splits into the ruled cubic i	(c) with a nodalline d and the plane �.For all other planes i	(�) is an irreducible quartic cutting � along two rays of K12(c; d;O) andalong the conic of intersection between � and 	.4.3 Pedal surfacesTheorem 1.1 of [1, p. 10] says that the pedal surface of K12(c; d;O) for the pole P is the imageof the plane at in�nity under the quartic inversion with respect to K12(c; d;O) and any sphere



138 S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : :centered at P .It is clear that the pedal surface is a quartic with the nodal line d containing c and theabsolute conic. It is also clear, according to the properties of the quartic inversion, that thepedal surface splits into the plane at in�nity and a cubic surface if the congruence K12(c; d;O)belongs to types IV, V or VI.If we exclude the two special cases ([1, p. 15]), which will be mentioned in the subsection5.5. of this paper, then the pedal surfaces for all other types of (1,2)-congruences are irreduciblequartics with nodal line d which contain the absolute conic. If K12(c; d;O) is of the type I, IIor III then this quartic is elliptic, parabolic or hyperbolic in the sense of section 3.
Figure 1: The illustration of Theorem1.2 in [1] Figure 2: Generation of the pedal surfacesThe basis for the constructive treatment of pedal surfaces is Theorem 1.2 in [1, p. 10]. Itsays that each plane � 2 [d], which cuts the conic c in the point C, cuts the pedal surfacealong the double line d and the circle with the diameter CP 0, where P 0 is the foot of P in theplane � (see Fig. 1).Now we can comprehend the generation of the pedal surfaces as it is shown in Fig. 2: kis the circle in the plane through the pole P perpendicular to the line d. One of its diametersis enclosed by P and by the foot of P on the line d.If the congruence belongs to the types IV or V, i.e. K12(c; d1; O1), then the circle k splitsinto two lines. One is the line at in�nity in the polar plane of O1 (the polarity is determinedby any sphere with the center P ), and the other is the perpendicular from P to the planesof the pencil [d1]. One example of the pedal surface for a congruence of type IV is shown inFig. 3.If the congruence belongs to type VI, i.e. K12(c1; d;O1), then the circles in the planes ofthe pencil [d] split into two lines. In each plane one of these lines is the perpendicular fromthe point P 0 to the rays of the pencil (C1), and the other is the line at in�nity. One exampleof the pedal surface for a congruence of type VI is displayed in Fig. 4.
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Figure 3: The line d1 is determined by one directing plane parallel to the axis of the directingparabola c. The pedal surface is the cubic through the curves d1 and k and the parabola c
Figure 4: The conic c1 is determined by a one-sheet hyperboloid which contains the line das a generator. The pedal surface is the conoid of 3rd degree with the nodal line d and itcontains the circle k and the conic c1.5 Classi�cation and construction of the pedal surfaces of (1,2)-con-gruences with a one-parameter set of ellipsesFor the pedal surfaces which will be the topic of this section the directing conic of K12 is anellipse e, di�erent from a circle. e lies in a plane perpendicular to the directing line d whichintersects e at a given point O (see Fig. 5). These surfaces have the special property thatthey are symmetric with respect to a plane which is not contained in the pencil [d].In the Cartesian coordinate system (O;x; y; z) the directrices e and d and point P can be



140 S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : :given in the following way:e : : : b2(x� xE)2 + (y � bq1� x2E)2 = b2; z = 0; (0 < b � 1; 0 � xE � 1)d : : : x = 0; y = 0P : : : (p; q; r):Here b is the minor semi-axis and xE the abscissa of the center E of the ellipse e (see Fig. 5).Without loss of generality we assumed that the major semi-axis a of the ellipse e is 1.Since the pedal surface of K12(e; d;O) for the pole P is uniquely determined by the �venumbers b, xE, p, q, r, we will denote it by FE[b; xE; p; q; r].
Figure 5 Figure 65.1 The equations of FE[b; xE; p; q; r]Between the pencil of planes [d] and the half-closed interval [��=2; �=2) there is a one-to-onemapping u $ �(u) (Fig. 6). According to Theorem 1.2 of [1, p. 11], each plane �(u) cutsFE[b; xE; p; q; r] along the circle c(u) with diameter CP 0. In the plane �(u) we introduce theCartesian coordinate system (O; t; z): The t-axis is the intersection of �(u) and the xy-planeand its positive orientation points into the semiplane x � 0 (Fig. 6).It is clear that in the cylindrical coordinate system (O; t; u; z) the equation of the surfaceFE[b; xE; p; q; r] can be written as(t� tS(u))2 + �z � r2�2 = R2(u); u 2 [��2 ; �2 )(3)where tS(u) is the t-coordinate of the center and R(u) is the radius of the circle c(u) in theplane �(u). tS(u) and R(u) depend on the t- and z-coordinates of C and P 0 according totS(u) = 12(tC(u) + tP 0(u));(4) R(u) = 12q(tC(u)� tP 0(u))2 + r2 :(5)



S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : : 141
Figure 7: The circle k is the normal projection of the circle k into the xy-planetC(u) is a function of b and xE and it is given bytC(u) = 2b(b xE cosu+q1 � x2E sinu)b2 cos2 u+ sin2 u :(6)tP 0(u) depending on p and q (see Fig. 7) obeystP 0(u) = p cos u+ q sinu :(7)After the substitution of t = px2 + y2 and u = arctan yx into equation (3) we can write theequation of FE[b; xE; p; q; r] in the homogeneous Cartesian coordinates (x : y : z : w) in thefollowing Salmon form:(x2 + y2)(b2x2 + y2)� [(px+ qy)(b2x2 + y2) + 2b(b xEx+q1� x2E y)(x2 + y2)]w ++ z2(b2x2 + y2)� r(b2x2 + y2)zw + 2b(b xEx+q1 � x2E y)(px+ qy)w2 = 0(8)Since t(v) = R(u) sin v + tS(u); z(v) = R(u) cos v + r2 ; v 2 [0; 2�)(9)are parametric equations of the circle c(u) � �(u) in the coordinate system (O; t; z) andx = t cos u, y = t sinu, we obtainx(u; v) = cosu (R(u) sin v + tS(u))y(u; v) = sinu (R(u) sin v + tS(u))z(u; v) = R(u) cos v + r2 ; u 2 [��2 ; �2 ]; v 2 [0; 2�)(10)as the parametric equations of the surface FE[b; xE; p; q; r] in the coordinate system (O;x; y; z).It is clear that the v-curves are the circles c(u) in the planes �(u) of the pencil [d].



142 S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : :5.2 Singular points of FE [b; xE; p; q; r] on the nodal lineA point on the nodal line d is a binode, a pinch-point or an isolated double point of FE[b, xE,p, q, r], if there exist two real, coinciding or imaginary tangent planes, respectively.It was mentioned earlier that a quartic surface with a nodal line has four pinch-points([6], [7]), but these need not be real and distinct points.Theorem 2 The pinch-points of the surface FE[b; xE; p; q; r], r 6= 0, are pairwise coincidingif and only if p = q = 0.Proof: According to [7, p. 218] the pinch-points are pairwise coinciding if and only if thepolynomials t2, u2, v2 in equation (1) have a common factor. For the surface FE[b; xE; p; q; r]equ. (1) takes the form (8). Since the polynomial b2x2+ y2 is irreducible, the polynomials t2,u2, v2 in (8) may have a common factor only if v2 is equal to zero.Because of the assumed values for the numbers b and xE the polynomial v2 in (8) vanishesonly in the case p = q = 0.From the construction of the pedal surfaces it is clear that all circles c(u) on such a surfaceare passing through the points P (0; 0; r) and O(0; 0; 0) (see Fig. 12).Corollary 1 The four pinch-points of the surface FE[b; xE; p; q; r] coincide if and only ifp = q = r = 0.Proof: For r = 0 it is a direct consequence of Theorem 3 (see Fig. 13).Now, let us consider the other cases, i.e., p 6= 0 _ q 6= 0:Lemma 2 The circles of the system c(u), u 2 [��2 ; �2 ), intersect the nodal line d in pairs(B1; B2) of a symmetric involution.Proof: For each binode B1 on the line d there are two circles of the system c(u), u 2 [��2 ; �2 ),passing through ([2, p. 192]). Since the surface FE[b; xE; p; q; r] is symmetric with respect tothe plane z = r2 (z-coordinate of the centers of the circles c(u)) these two circles intersectonce more in the binode B2 which is symmetric to B1 with respect to the plane z = r2 .Lemma 3 The parameters u1; u2 of circles c(u1), c(u2) sharing the binodes (B1; B2) on dobey the equations:(a) if p = 0, xE = 0, q 6= 0 or q = 0, xE = 1, p 6= 0 thentanu1 = � tanu2 ;(11)(b) in other cases tanu1 � tan u2 �A(tanu1 + tan u2)� b2 = 0;(12)where A = b(bqq1 � x2E � pxE)=(bqxE + pq1� x2E).Proof: For t = 0 equation (3) gives the z-coordinates of the binodes (B1; B2):z1;2 = �qR2(u)� t2(u) + r2 :(13)
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Figure 8: FE [0:4; 0:5;�1; 1;�3=4], u1 =�0:0785; u2 = 0:4357 Figure 9: FE [0:4; 0:5; 1; 1; 3:5]According to the relations given in (4), (5), (6) and (7) the equation z2(u1) = z2(u2) may bewritten as(p+ q tan u1)2b(b xE +q1 � x2E tan u1)b2 + tan2 u1 = (p + q tan u2)2b(b xE +q1� x2E tan u2)b2 + tan2 u2 :If the trivial case u1 = u2 and the case p = 0 ^ q = 0 are excluded, then the above equationtakes the form (11) or (12).This property is illustrated in Fig. 8.Lemma 4 The pair of tangent planes of the surface FE[b; xE; p; q; r] at the correspondingpoints B1; B2 2 d are �(u1); �(u2), where u1, u2 are determined by the circles of the systemc(u); u 2 [��=2; �=2), meeting at the points B1, B2.Proof: At any point B on the nodal line d each of the two tangent planes is spanned by dand by the tangent of any curve which lies on the surface and passes through B.Theorem 3 The surface FE[b; xE; p; q; r](a) has four real pinch-points if p = 0; xE = 0; q < 0 or q = 0; xE = 1; p < 0, and it has tworeal pinch-points if p = 0; xE = 0; q > 0 or q = 0; xE = 1; p > 0.(b) In all other cases it has four, three or two real pinch-points if and only ifr2 T 4(bq +q1 � x2Epp2 + b2q2)2pb2q2 + p2 + bqq1� x2E � pxE :Proof: The pinch-points of a surface are points on its double curve at which two tangentplanes coincide. Therefore, according to Lemma 4, the pair (P1; P2) will be the pair of pinch-points if the planes �(u1), �(u2) coincide. Now, according to Lemma 4 and Lemma 3, by



144 S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : :substituting u1 = u2 into the equations (11) and (12) we get the angles uI, uIIuI = 0; uII = ��2 for (a)(14) uI;II = arctan(A�pA2 + b2) for (b)(15)which determine the circles c(uI), c(uII) meeting the line d in the pinch-points. For the valuesuI, uII the equations (13) give the z-coordinates of the pinch-points.(a) For p = 0; xE = 0; q 6= 0: z1;2 = r2 � r2 , z3;4 = r2 �p�2bq.For q = 0; xE = 1; p 6= 0: z1;2 = r2 �p�2p, z3;4 = r2 � r2.(b) For all other casesz1;2 = r2 �vuutr24 + (bq � �)2pp2 + b2q2 � � ; z3;4 = r2 �vuutr24 � (bq + �)2pp2 + b2q2 + �with � = q1� x2Epp2 + b2q2 and � = bqq1 � x2E � pxE.The denominator pp2 + b2q2� � in the �rst of the above equations is positive. Namely,it is clear that the function f(b; xE; p; q) = pp2 + b2q2 � bqq1� x2E + pxE is equal tozero only in the cases (p = q = 0) or (p = 0; xE = 0) or (q = 0; xE = 1) which in case(b) are excluded.For other values, it follows from @f=@b = @f=@xE = @f=@p = @f=@q = 0 that xE =�p=pp2 + b2q2 and that the extremum of the function f is (b2q2 � jbqjbq)=pp2 + b2q2 �0.Now, we can conclude that the points P1, P2 are always real and that the points P3,P4 are real and distinct, real and coinciding or a pair of imaginary points if and only ifr2 T (4(bq + �2)=(pb2q2 + p2 + �) (see Fig. 9, Fig. 10, Fig. 11).5.3 Singular points of FE [b; xE; p; q; r] not lying on the nodal lineBefore we start to analyze the singular points of FE[b; xE; p; q; r] which do not lie on the nodalline we will cite some of Salmon's considerations:A quartic with a nodal line may have also double points. Two of the eight planes whichmeet the surface in straight lines will coincide with the plane joining the nodal line with oneof the nodal points. Each such plane intersects the surface twice in the nodal line and in twolines meeting at the nodal point. But any such plane may meet the surface besides the nodalline in a two-fold line containing two nodal points; the surface may thus have eight nodalpoints ([7, p. 218]).Accepting these general considerations we can formulate the followingTheorem 4 An elliptic quartic passing through the absolute conic and with a nodal line mayhave three real nodal points which do not lie on the nodal line.Proof: Two of the eight planes which meet the surface in straight lines are the pair ofimaginary planes determined by the nodal line and the pair of imaginary lines at in�nity.Since only six of the eight planes which meet the surface in straight lines may coincide inpairs, for such a surface there exist at most three planes through the nodal line and the nodalpoints. Every such plane must meet the surface in the nodal line twice, and in the pair ofisotropic lines (split circle) intersecting at the real nodal point.



S. Gorjanc: The Pedal Surfaces of (1,2)-Congruences : : : 145Corollary 2 Only in the case r = 0 the pedal surfaces FE[b; xE; p; q; r] can have nodal points,which are not located on the nodal line. At most three real nodal points of the surface arepoints of intersection between the ellipse e and the circle k and di�erent from O.Proof: Each plane through the nodal line cuts the surface in the circle with radiusR(u) = 12q(tC(u)� tP 0(u))2 + r2:Since the circle splits only if R(u) = 0, the surface has nodal points only if r2 = 0 andtC(u) = tP 0(u).According to Cor. 2 the surface FE[b; xE; p; q; 0] has at most three real nodal points notlying on the nodal line. In these cases the circle k and the ellipse e, on which the end pointsof the diameters of the circles c(u) are lying, belong to the xy-plane. The circle k and theellipse e are intersecting at point O and at three other points. Since these points may be allreal and distinct or coinciding or they may be pairwise coinciding or imaginary, the surfacesFE[b; xE; p; q; 0] have di�erent numbers and di�erent types of real nodes.5.4 The classi�cation of the surfaces FE[b; xE; p; q; r]According to the subsections 5.2. and 5.3. we can classify the surfaces FE[b; xE; p; q; r] withregard to the number and type of their real singular points in the following way:Type 1 (Fig. 9) 4 pinch-points, binodes and isolated double points on the line dType 2 (Fig. 10) 3 pinch-points, binodes and isolated double points on the line dType 3 (Fig. 11) 2 pinch-points, binodes and isolated double points on the line d
Figure 10: FE [0:4; 0:5; 1; 1; 2:774] Figure 11: FE [0:4; 0:5; 1; 1; 2]Type 4 (Fig. 12) 2 pinch-points and isolated double points on the line dType 5 (Fig. 13) 1 pinch-point and isolated double points on the line dType 6 (Fig. 14) 2 pinch-points, binodes and isolated double points on the line d, 3 conicalpoints
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Figure 12: FE [0:4; 0:5; 0; 0; 2] Figure 13: FE [0:8; 0; 0; 0; 0]Type 7 (Fig. 15) 2 pinch-points, binodes and isolated double points on the line d 1 conicalpoint, 1 point of double contactType 8 (Fig. 16) 2 pinch-points, binodes and isolated double points on the line d, 1 point oftriple contactType 9 (Fig. 17) 2 pinch-points, binodes and isolated double points on the line d, 1 conicalpoint

Figure 14: FE [0:4; 0:5; 1; 1; 0] Figure 15: FE [2=3; 0:38; 1; 1:78; 0]Type 10 (Fig. 18) 1 point of double contact and isolated double points on the line d, 2 conicalpointsType 11 (Fig. 19) 1 point of double contact and isolated double points on the line d, 1 pointof double contactType 12 (Fig. 20) 2 pinch-points, binodes and isolated double points on the line d, 1 point ofdouble contact on the line d
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Figure 16: FE [2=3; 0:8; 1:95; 0:1; 0] Figure 17: FE [2=3;p3=7;�1; 1; 0]
Figure 18:FE [2=3; 1=4; 1=4; 0:375:p15; 0] Figure 19:FE [2=3; 1=4; 2=9;p5=3; 0]Type 13 (Fig. 21) 1 point of double contact and isolated double points on the line dType 14 (Fig. 22) 1 point of triple contact and isolated double points on the line d, 1 conicalpointType 15 (Fig. 23) 1 point of fourfold contact and isolated double points on the line d5.5 Special cases of FE [b; xE; p; q; r]The special class of the surfaces FE[b; xE; p; q; r] is obtained for b = 1, xE = 1. In this casethe ellipse e is a circle. Since the circles e and k lie in parallel planes, the absolute points ofthe xy-plane are double points of the surface, and any plane parallel to the xy-plane cuts itinto a bicircular quartic. These surfaces are elaborated in [1] and [3].The surface FE[b; xE; p; q; r] degenerates only in two cases:1. FE[1; 1; 0; 0; r] splits into the sphere and the pair of isotropic planes through the line d,and2. FE[1; 1; 2; 0; 0] degenerates into the circle e and the line d. Namely, each plane throughd cuts the surface in d and in the pair of isotropic lines through a point on the circle e.
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Figure 20:FE [2=3;p3=7;�0:6;�0:6p3; 0] Figure 21:FE [2=3;p3=7; 0:4; 0:4p3; 0]
Figure 22:FE [2=3; 2=3; 1; 0:75p5; 0] Figure 23: FE [0:75; 0; 0; 8=3; 0]6 ConclusionAccording to the facts that the surfaces FE[b; xE; p; q; r] (classi�ed in the subsection 5.4) havea higher number of singular points than the general pedal surfaces of the type I, and thatmost of the theorems are valid or analogous theorems can be easily derived for the pedalsurfaces of types II and III, the same procedure of classi�cation could be applied also for thepedal surfaces of these (1,2)-congruences. It is still open whether all quartics passing throughthe absolute conic and containing a nodal line can be classi�ed in this way.References[1] S. Gorjanc: Constructive elaboration of the Pedal Surfaces of the (1,2) Congruence.KoG 1, 9{15 (1996).[2] S. Gorjanc: Quartic Inversion in Space and Some of Its Product. Rad Hrvat. Akad.Znan. Umjet., Mat. Znan. [470] 12, 187{197 (1995).
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