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Abstract

This paper deals with the special class of 4th order surfaces in 3-dimensional Eu-

clidean space. The surfaces of that class contain the absolute conic, a double straight

line and triple points. It is shown that such surfaces may contain at least two real triple

points on a double line which are analysed according to the type of their tangent cones.

The selected examples of the surfaces are drawn with the program Mathematica 4.1.

1 Introduction

In this paper we use the term “quartic” for the 4th order surfaces in three dimensional Eu-
clidean space. In the homogeneous Cartesian coordinates (x:y:z:w), x, y, z ∈ R, w ∈ {0, 1},
(x:y:z:w) 6=(0:0:0:0), a quatric is given by the homogeneous equation F 4(x, y, z, w) = 0
of degree 4. In the 19th and at the beginning of the 20th century their properties were
studied intensively in a number of geometric books and papers. We present here the ba-
sic classification of those quartics which contain singular lines [7, vol. II, p. 200-252], [6,
p. 1537-1787].

- quartics with a triple straight line, (the class contains only ruled quartics);

- quartics with a double twisted cubic, (the class contains only ruled quartics);

- quartics with a double conic section (the class contains cyclides);

- quartics with a double conic section and a double line, (the class contains only ruled
quartics);

- quartics with three double lines, (the class contains Steiner’s quartics);

- quartics with two double straight lines, (the class contains only ruled quartics);

- quartics with one double straight line, (the class contains ruled quartics, the pedal
surfaces of (1,2) congruences [2] and the surfaces which we will be considered in this
paper).
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2 Tangent cones at singular points

The point T (x0:y0:z0:w0) is a singular point of the surface given by the equation Fn(x, y, z, w) =
0 if and only if Fn(x0, y0, z0, w0) = 0 and ∂F

∂x
(T ) = ∂F

∂y
(T ) = ∂F

∂y
(T ) = ∂F

∂w
(T ) = 0. At such

a point the tangents of the surface form a tangent cone of order equal to its multiplicity.

We state here some analytical properties of tangent cones, according to [7, Vol.I, p. 56] and
[5, str. 251], which will be used in the proofs in the following section.

Proposition 1 Each homogeneous equation in x, y, z, of degree n, Hn(x, y, z) = 0, rep-
resents a cone Cn

O with a vertrex (0:0:0:1). If the polynomial Hn(x, y, z) is irreducible
over the field R, the cone Cn

O is a proper cone of order n. If Hn(x, y, z) = Hn1(x, y, z) ·
Hn2(x, y, z) · · ·Hnk(x, y, z), n1 + n2 + · · · + nk = n and k 6 n, the cone Cn(O) degenerates
into the cones Cn1(O), Cn2(O), . . . , Cnk(O).

Proposition 2 Each homogeneous equation in x, y of degree 2, H2(x, y) = 0, represents
the pair of planes through the axis z. If H2(x, y) is reducible over the field R the planes are
real, they coincide if H2(x, y) is a total square, and they are a pair of imaginary planes if
H2(x, y) is irreducible over the field R.

Proposition 3 If X ⊂ R
n is a hypersurface given by the polynomial F (x1, x2, ..., xn) and

we write
F (x) = Hm(x) + Hm+1(x) + ... + Hn(x),

where Hk(x) is homogeneous of degree k in x1, ..., xn; the tangent cone at the point (0,0,...,0)
will be the cone of order m given by the homogeneous polynomial Hm.

3 Triple points on non ruled quartics through the ab-

solute conic and with a double straight line

In the homogeneous Cartesian coordinates each quartic F with the double line z (x = 0, y =
0) which contains the absolute conic ω (x2 + y2 + z2 = 0, w = 0) can be presented by the
following equation:

F (x, y, z, w) = (x2 + y2 + z2)a2 + wd3 + zwb2 + w2c2 = 0, (1)

where a2, b2, c2, d3 are homogeneous polynomial in x, y of degree 2, 2, 2 and 3, respectively,
with real cofficients and at least one of the coefficients in polynomial a2 is different from 0,
i.e. a2 6= 0.

The proof of this is a direct consequence of the equation of the quartic with the double line
z [7, vol. II, p. 217] and the fact that the section of such quartic and the plane at infinity is
the absolute conic ω and the pair of lines through the point (0:0:1:0) given by the equations
a2 = 0, w = 0. Such proof can be found in [3, p. 136].

Theorem 1 T is a triple point on the surface F , given by the equation (1), if and only if

T (0 : 0 :t: 1), t ∈ R, (2)
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t2a2 + tb2 + c2 = 0, (3)

d3 + z̃(2ta2 + b2) 6= 0. (4)

Proof: The triple point of the surface F always lies on the double line z. (If a triple point did
not lie on the double line, any line joining that point and the point on the double line would
cut the surface into five points which is impossible for non ruled quartic.) Furthermore, the
point (0:0:1:0) can not be a triple point of the surface F . (If (0:0:1:0) was a triple point, it
would be a triple point of any plane section through it, but the plane at infinity cuts the
surface F into the degenerated 4th order curve ((x2 + y2 + z2)a2 = 0, w = 0) with a double
point (0:0:1:0).) Therefore, the coordinates of triple points are always (0:0:t:1).

If we translate the Cartesian coordinate system O(x, y, z) into the system T (x̃, ỹ, z̃), where
x̃ = x, ỹ = y, z̃ = z − t, we obtain the equation

F (x̃, ỹ, z̃, 1) = (x̃2 + ỹ2)a2 + d3 + (z̃ + t)2a2 + (z̃ + t)b2 + c2 = 0. (5)

If T is a triple point, then according to Proposition 3 a minimal degree of the homogeneous
polynomials in (5) is 3 and it follows that t2a2 + tb2 + c2 = 0 and d3 + z̃(2ta2 + b2) 6= 0.

On the other hand, if T (0:0:t:1), t2a2 + tb2 + c2 = 0 and d3 + z̃(2ta2 + b2) 6= 0, then the
tangent cone at the point T (0:0:t:1) is a cone of 3rd order, i.e. T is a triple point of the
surface F . �

Corollary 1 If there are two different triple points on the double line of the surface F , then
the tangent planes at other points on the double line are given by the equation a2 = 0.

Proof: Without loss of generality we assume that T1(0:0:0:1) and T2(0:0:t:1), t 6= 0, t ∈ R

are triple points of the surface F . Then from Theorem 1 we conclude

c2 = 0 and b2 = −ta2. (6)

Let Z0(0:0:z0:1) be the point on the double line different from T1 and T2, i.e. z0 6= 0 and
z0 6= t. In the coordinate system Z0(x

′, y′, z′), x′ = x, y′ = y, z′ = z − z0, the surface F is
given by the equation:

F (x′, y′, z′, 1) = (x′2 + y′2 + z′2)a2 + d3 + z′(2z0 − t)a2 + z0(z0 − t)a2 = 0. (7)

According to the Proposition 3 z0(z0 − t)a2 = 0 is the equation of the tangent cone at the
binode Z0. Since z0(z0 − t) 6= 0, it follows that a2 = 0 is the equation of a tangent cone at
any point different from T1 and T2 on a double line. �

See: Fig. 1-3

Theorem 2 If T (0:0:t:1) is a triple point of the surface F given by the equation (1), then
for the tangent cone T C(T,F) of the surface F at the point T one of the following facts is
valid:

1. T C(T,F) is a proper (non degenerate) cone of 3rd order if and only if d3 +2z̃ta2 + z̃b2

is irreducible over the field R.
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2. T C(T,F) degenerates into the real 2nd order cone and a plane if and only if the poly-
nomials d3 and 2ta2 + b2 have a common linear factor into x and y.

3. T C(T,F) degenerates into three (independent) planes intercesting into the point T if
and only if 2ta2 + b2 is the factor of d3 or d3 = 0.

4. T C(T,F) degenerates into three planes through the double line z if and only if 2ta2 +
b2 = 0 and d3 6= 0.

Proof: According to the Theorem 1, equation (5) and Proposition 3, with respect to the
coordinate system T (x̃, ỹ, z̃) the tangent cone of the surface F at the triple point T (0:0:t:1)
is given by

d3 + z̃(2ta2 + b2) = 0. (8)

The axis z(x = 0, y = 0) is the double line of the tangent cone given by the equation (8).
Namely, each 3rd order cone with the double line z and the vertrex (0:0:0:1) is given by the
equation u3 + zu2 = 0, where u3,u2 are homogeneous polynomials in x and y of degree 3
and 2, respectively.

If the polynomial d3 +2z̃(ta2 +b2) is irreducible over the field R, the tangent cone T C(T,F)

is an irreducibile 3rd order cone with the double line z (according to the Proposition 1).

If the polynomial d3 + z̃(2ta2 + b2) is reducible consisting of a linear and an (irreducible)
2nd order factor, we can obtain three different types of tangent cones because the greatest
exponent of z̃ is 1.

- The 2nd order factor is homogeneous in x, y and z, while the linear factor is homogeneous
in x and y. In this case d3 and 2ta2 + b2 have a common linear factor and the tangent
cone degenerates into the plane through z and an irreducibile, real cone of order 2 through
z (Proposition 1).

- The 2nd order factor is homogeneous in x and y, while the linear factor is homogeneous
in x, y and z. In this case 2ta2 + b2 is a factor of d3 or d3 = 0 and 2ta2 +b2 is irreducible
over the field R. The tangent cone T C(T,F) degenerates into three planes. Two of them are
imaginary planes through the line z (Proposition 2), and the third is a real plane through
T which does not contain the line z.

- Both, the linear and the 2nd order factor are homogeneous in x and y. This case occurs
only if 2ta2 + b2 = 0, d3 6= 0 with d3 reducible over the field R to a linear and irreducible
factor of order 2. The cone T C(T,F) degenerates into three planes through the line z and
the two of them are imaginary.

If the polynomial d3 + z̃(2ta2 + b2) is reducible to three linear factors, we can obtain two
different types of a tangent cone.

- 2ta2 + b2 is a factor of d3 or d3 = 0 and 2ta2 + b2 is reducible over the field R. The
tangent cone T C(T,F) degenerates into three planes, two of them real (different or coinciding)
through the line z (Proposition 2) and the third plane not containing z.

- 2ta2 + b2 = 0, d3 6= 0 and d3 is reducible over the field R to three linear factors. The
cone T C(T,F) degenerates into three real planes through the line z, whereby all three planes
or just two of them may coincide. �

See: Fig. 1-13

4



4 Examples

In this section we present thirteen pictures of the surfaces considered before, their triple
points and tangent cones. The pictures are obtained by Mathematica 4.1. For each surface
its equation in the Cartesian coordinates (x, y, z) is given.

Fig. 1 Fig. 2

Fig. 3

The figures 1-3 show three types of the pedal
surfaces of (1,2) congreunces with two triple
points (types VI1, II1 and I1 according to [2]).
The directing curves of the congruences are
the double line of the surface and a hyperbola,
a parabola and an ellipse. The pole lies on the
double line. For the surfaces and the tangent
cones at their triple points which are shown in
the figures 1-3 the double line is nodal, cuspi-
dal and isolated, respectively.

Figure 1: (x2 + y2 + z2)(x2 − 2y2) − 2x3 − 2y2x + 3(2y2 − x2)z = 0

2 triple points (proper tangent cones) and ordinary binodes on a double line

Figure 2: (x2 + y2 + z2)x2 − 2x2y − 2y3 − 3x2z = 0

2 triple points (proper tangent cones) and pinch-points (unodes) on the cuspidal line

Figure 3: (x2 + y2 + z2)(x2 + 3y2) − 2x3 + 2x2y − 2xy2 + 2y3 − 2(x2 + 3y2)z = 0

2 triple points (proper tangent cones) and isolated binodes on a double line
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The considered quartics can also contain only one triple point with a proper tangent cone.
Then they can contain at least two pinch-points on the double line. The figures 4 and 5
show two examples of the pedal surfaces of (1,2) congruences (types I3,1 and V1 according
to [2].

Fig. 4 Fig. 5

Figure 4: (x2 + y2 + z2)(x2 + y2) + 2x3 + 4x2y + 2xy2 + 4y3 + 2(3x2 − xy + 6y2)z = 0

1 triple point (a proper tangent cone), 2 pinch-points, ordinary and isolated binodes on a
double line

Figure 5: (x2 + y2 + z2)xy − x2y − y3 + (x2 + 2xy − 2y2)z = 0

1 triple point (a proper tangent cone), ordinary binodes on a double line

If a tangent cone at a triple point on the
considered quartics degenerates into the plane
and a 2nd order cone, that cone must be real,
because it contains a double line of the surface
as a real ruling. It is the case 2 from the the-
orem 2. The figure 6 shows the pedal suface
of the type I3,2 (according to [2]).

Fig. 6

Figure 6: (x2 + y2 + z2)(x2 + y2) − x3 + x2y − xy2 + y3 + (x2 − y2)z = 0

1 triple point (a degenerated tangent cone, a 2nd order cone and a plane), 2 pinch-points,
ordinary and isolated binodes on a double line
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In the figures 7-9 the tangent cones at triple
points degenerate into three planes. One of
the tangent planes does not contain the double
line of the surface. We obtained the equations
of the surfaces by adding the polinomyals of
the degenerated tangent cones and the poly-
nomial (x2 + y2 + z2)(x2 + y2). Therefore, the
surfaces in the figures 7-9 contain the absolute
conic and a pair of isotropic lines at infinity.
These surfaces illustrate the case 3 from the
theorem 2.

Fig. 7

Fig. 8

Fig. 9

Figure 7: (x2 + y2 + z2)(x2 + y2) + 2z(x2 − y2) = 0

1 triple point (a degenerated tangent cone, 3 real and different non collinear planes), 2
pinch-points, ordinary and isolated binodes on a double line

Figure 8: (x2 + y2 + z2)(x2 + y2) + zx2 = 0

1 triple point (a degenerated tangent cone, 3 real planes, 2 coinciding), 1 pinch-point, ordi-
nary and isolated binodes on a double line

Figure 9: (x2 + y2 + z2)(x2 + y2) + z(2x2 + y2) = 0

1 triple point (a degenerated tangent cone, 3 non collinar planes, 2 imaginary planes through
a double line), 2 pinch-points, ordinary and isolated binodes on a double line
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The surfaces in the figures 10-13 contain triple points with degenerated tangent cones as in
the case 4 from the theorem 2. Three tangent planes are collinear with a double line and are
real and different in the example 10, two of them coincide in the example 11, two of them
are imaginary in the example 12 and all the three coincide in the example 13. All other
points on a double line are isolated binodes.

We obtained the equation of each surface by adding the polynomials which represent the
section at infinity and the tangent cone at triple point.

Fig.10 Fig.11

Fig.12 Fig. 13

Figure 10: (x2 + y2 + z2)(x2 + y2) − 3x2y + y3 = 0

Figure 11: (x2 + y2 + z2)(x2 + y2) + x2y = 0

Figure 12: (x2 + y2 + z2)(2x2 + y2) − 2y(x2 + y2) = 0

Figure 13: (x2 + y2 + z2)(x2 + y2) + x3 = 0
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