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Abstract

This paper gives the classification of the 4th order surfaee8® which have a
triple point and touch the plane at infinity at the absoluteico The classification is
made according to the type of the tangent cubic cone at atppint. Three types
with sixteen subtypes are obtained. For these surfaceothedeneous and parametric
equations are derived and each type is illustrated Widthematicagraphics.
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1. Introduction

In the real three-dimensional projective spae&R), in homogeneous Cartesian coordi-
nates(z :y:z:w)#(0:0:0:0), (x,y,2 € R,w € {0,1}), equation

Fn(xvyazaw)207 (1)

whereF,, is a homogeneous algebraic polynomial of degtedefines a two-dimensional
extent of pointsb,, which is called amth order surface.

According to [8, p. 268], we can also use the following natati
Up + Un1W + oo+ Uy’ + . Fuyw™ ! Fupw™ =0, (2)

whereu;, j € {0,1,...,n} are homogeneous polynomialsiny andz of degreey.

Some properties of surfacés,, according to [8], [9], [13], [5], are the following:

. Any straight line meets surfack,, atn points or lies entirely on the surface. Any plane
cuts surface,, into thenth order plane curve.

. If the polynomialF;, can be factorized
F,(z,y,z,w) = Fp, (x,y,z,w) « .. - Fy, (¢,9,2,w), n1+..+np=mn, 3)

surface®,, splits into the surfaces,,,,... 0y, .



. Every homogeneous equationany andz:
F.(x,y,z) =0 or w, =0, (4)
represents theth order cone whose vertex is the origin: 0: 0: 1)

« POiNtT = (z7 : yr : zr : wr) which satisfies conditions

Fo(xp,yr, 2r,wr) =0,

oF, oF, oF, OF,
Ox Oy 0z ow (T) #0, ®)

is called the regular point of a surfade,. All tangent lines to a surface at its regular point
form a pencil of linegT’) in the tangent plane which is given by the following equation

T T) 4 (= ) GET) + (= 2n) G + (w = wn) 2T =0, (6)

(T) £0v Z2(T) £ 0v E2(T) £0v

(x — )

If the originO = (0: 0: 0 : 1) is the regular point of surfacg,,, then
Up + e F U™ P =0 (7

is its equation, and
Uy = 0 (8)
is the equation of the tangent plane of surfégeat the originO.

. PointS = (zgs : ys : 25 : wg) which satisfies conditions

Fo(zs,ys, 25, ws) = 0,
OF, .o  OF, . 0F, . 0F,
ox (9) = 8y( )= 0z (9) = ow
is called the singular point of surfadg,. All tangent lines to a surface at its singular point

form an algebraic cone (called the tangent cone) with theexer. If k(1 < k < n) is the
order of a tangent cone, a singular pathis thek-ple point of surface,,.

If the originO = (0: 0: 0 : 1) is thek-ple point of surface,,, then

(S) =0, )

Up + .. +upw™ F =0 (20)

is its equation, and
Up = 0 (11)

is the equation of a tangent cone at a singular pOint

2. Quartics with a triple point

In this paper we use the terfquartic” for the 4th order algebraic surfaces. Quartics with
singular lines can be classified ([9, pp.200-252], [6, p@7:%787]) in the following way:

- quartics with a triple straight line (the class containi/ouoled quartics);



- quartics with a double twisted cubic (the class contairg nred quartics);
- quartics with a double conic section (the class contaicdss);

- quartics with a double conic section and a double line (tassccontains only ruled
quartics);

- quartics with three double lines (the class contains ratedl SEINER’ S quartics);
- quartics with two double straight lines (the class corgainly ruled quartics);

- quartics with one double straight line (the class contaitsd quartics and the sur-
faces considered in [2] and [3]).

On addition to quartics with singular lines, there are guanvith isolated singularities [9,
pp. 238-251]:

- quartics with one triple point;

- quartics with double points (at most sixteen double peistmical points, binodes or
unodes).

Quartics with a triple point are studied in detail b@ R\ [7]. Ifthe originO = (0: 0:0: 1)
is the triple point of quarti@,, it is defined by the following equation:

ug + wuz = 0, (12)

whereuy, us are homogeneous polynomialsiny andz with degrees 4 and 3, respectively.
ug = 0 is the equation of the tangent cone at the triple pérandu, = 0,w = 0 are
equations of the curve at infinity.

Some properties of these surfaces according to [7] are:

e There is only one triple point on surfadg,. (Quartics with two triple points must
possess a singular line, which joins triple points.)

e There are 12 straight linég, go, ...., g12) through the triple point, which entirely lie
on surfaced,. They are the intersection of the cones which are given bytiapns
ug = 0 andus =. Some of those lines can coincide or be imaginary in pairs.

e There ar&6 = (122) planes (determined by the pairs of lingywhich cut surface,
into the conics through the triple point.

e There arer92 = (*7) 2-order cones (each cone is determined by five lippsrhich
cut surfaceb, into the cubics through the triple point.

e On addition to the triple point, surfack, can possess at most 6 real double points.
Those points lie on coinciding lingg. Double points can be of typ€s (conical
points) or By (binodes), wheré: is the number of coinciding lineg;. The points
of type U (unodes) exist only in the case when coinciding ligesire the singular
generator of the tangent cong;(= 0) at the triple point.



3. Classification of cubic cones

According to the NWTON’ s classification of plane cubics [10, pp. 162-179], [11, pp- 51
61], there are five types alivergent parabolaswhich in Cartesian coordinateés;, y),
(z,y € R), can be represented by the equation

y? = az® + bz + cx + d. (13)
The classification of those parabolas corresponds to the abthe following equation:

az® +bax® + cx +d = 0. (14)
1. If equation (14) has three real and different roots, themrae has an oval and a parabolic

branch. (Fig. 1.1)

2. If equation (14) has one real and two imaginary roots, ¢heurve has a parabolic branch.
(Fig. 1.2)

3. If equation (14) has two equal real roots which are grehtar another real root, then a
curve has a self-intersecting parabolic branch (crunadaitg. (Fig. 1.3)

4. If equation (14) has two equal real roots which are lesa #r@other real root, then a
curve has a parabolic branch and an isolated singular paénb@al cubic). (Fig. 1.4)

5. If equation (14) has three equal real roots, then a curgeah@arabolic branch with a
cusp (cuspidal cubic). (Fig. 1.5)

(% (K

Figure 1.

According to the NWTON' s theorem [10, p. 163], every cubic may be projected into one
of the five divergent parabolas. Therefore, every cubic @amebe regarded as the system
of lines which join its vertrex with points of a divergent phola and its equation may be
brought to the following form:

2% = ax® + ba?z + cx2® + d25. (15)

Now we have the following classification of cubic cones gibgrequation (15):

1. If equation (14) has three real and different roots, theoree has a twin-pair sheet and a
single sheet. (Fig. 2.1)



2. If equation (14) has one real and two imaginary roots, theone has a single sheet only.
(Fig. 2.2)

3. If equation (14) has two equal real roots which are grehtar another real root, then a
cone has a crunodal singular generator - a crunodal cubi ¢éig. 2.3)

4. If equation (14) has two equal real roots which are less dmther real root, then a cone
has an acnodal singular generator - an acnodal cubic coige 2(B)

5. If equation (14) has three equal real roots, then a cone haspidal singular generator -
a cuspidal cubic cone. (Fig. 2.5)
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Figure 2.

4. Quartics in E3 which have a triple point and touch the
plane at infinity through the absolute conic

In real projective spac®?(R) the Euclidean metric defines the absolute conic in the plane
at infinity and it is given by the formulas? + 32 + 22 = 0, w = 0.

Theorem 1 In the 3-dimensional Euclidean space the following equmatio
F(z,y,z,w) = (2* +y* + 2%)? + wuz = 0, (16)

whereuz # (22 + y? + 2%)uy, andus, u; are homogeneous polynomialsany and z of
degree 3 and 1 respectively, defines a quartic which has ktpipint and touches the plane
at infinity through the absolute conic.

Proof:

Sinceus # (2 + y? + 2%)uy, the polynomialF'(z, y, z, w) is irreducible over the field,
then surfaceb, (defined by equation (16)) is a proper quartic.u(f= (22 + y? + 2%)uy,
a quartic splits into the isotropic cone and a sphere thralglorigin.)

According to equations (10) and (11), equation (16) defingsatic with a triple point at
the origin and the equatiar; = 0 defines a tangent cone at a triple point.

In the plane at infinity quarti@, has the absolute coni¢? + y? + 22)? = 0,w = 0)
counted twice. It is not a singular line, since for the poioitshe absolute conic it holds
that 9 = %_5 = %—f =0, % = ug # 0, because we assumg # (22 +y? + zz)u.l. -
Therefore, according to equation (6), the tangent planeitpon the absolute conic is
defined by the equation = 0.



About straight lines and double points on surfacesp,

On surfaced, there are 3 pairs of coinciding isotropic lines which lie iplanes. They
are the intersection of the isotropic cone and the 3-degregent cone with verte® (z2 +
y? + 22 = 0, u3 = 0). Since double points always lie on coinciding lines, we canclude
that there are no real double points on the surfaces givenlgtion (16).

4.1. Classification of surfacesp,

According to the type of the tangent cofie (usz = 0) at the triple point, surfaces given by
equation (16) are classified in the following way:

Type | T is a proper 3-order cone.

I1 7 has a twin-pair sheet and a single sheet. (Fig. 3)
I» 7 has asingle sheet only. (Fig. 4)

I3 7 is a crunodal cubic cone. (Fig. 5)

I4 7 is an acnodal cubic cone. (Fig. 6)

I5 7 acuspidal cubic cone. (Fig. 7)

Type Il 7 splits into a 2-order con@ and a real plan®.

Il1 Cisareal cone an® cuts it into two real and different lines. (Fig. 8)
Il2 Cis areal cone an® is its tangent plane. (Fig. 9)
I3 Cisareal cone an® cuts it into a pair of imaginary lines. (Fig. 10)

Il 4 Cisanimaginary cone. (Fig. 11)
Type lll 7 splits into three plane®;, P2 andPs.

Il 1 P1, P2 andPs are real and different planes with one common point. (Fig. 12

Il o Py isreal andP,, P53 are a pair of imaginary planes and they have one common
point. (Fig. 13)

Il 3 P1, P2 andPs are real and diferent planes with one common line. (Fig. 14)

Il 4 Py isreal andPy, P5 are a pair of imaginary planes and they have one common
line. (Fig. 15)

Il 5 Two of the plane$;, P2, P coincide. (Fig. 16)
Il ¢ The planesP;, P2, Ps coincide. (Fig. 17)



4.2. Parametric equations of surface®,

Forw = 1 equation (16) takes the following form:
ug +uz = 0. 17)
If we write ug = T3(x, y, z) and use spherical coordinatgs u, v)
T = pcosusinv, Yy = psinusinv, Z = pcosv,

equation (17) takes formp?(p + T3(cosusinv, sinusinv, cosv)).

For every point on surface,, which is not its triple poin© (p = 0), the following relation
holds:

p = —T3(cosusinv, sinusinv, cosv). (18)

Therefore, the parametric equations of surfégere:

x(u,v) = —T3(cosusinv, sinusinv, cosv)cosusinv
y(u,v) = —T3(cosusinv, sinusinv, cosv)sinusinv
z(u,v) = —T3(cosusinv, sinusinv, cosv)cosv, u,v € [0,7] x [0, 7]. (29)

In a general case ten real numbers define the tangent @ {, z) = 0) at triple point
00:0:0:1).

T3(I7 Y, Z) =

3 2 2 2 2 3 2 2 3
a1z +a2x”yY + a3x"z + asxy” + asxrz” + asgxryz + ary” +asy z + agyz” + aioz”, (20)
a; € R,3a; # 0.

4.3. Drawing of surfacesd, with Mathematica

The followingMathematicagraphics have been created by using formula (20) and paramet
ric equations (19).

Figure 3.: An example of the tyde (22 + ¢ + 2%)% + (=23 + 3z2% — y%2)w = 0.
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Figure 4.: An example of the tyde
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Figure 5.: An example of the tydg
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Figure 6.: An example of the tydaq
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Figure 7.: An example of the tyde



(% + 92 4+ 222 + 2(2® + y? — 22°)w = 0.

Figure 8.: An example of the tydée,
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Figure 9.: An example of the tydé,
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Figure 10.: An example of the typks

(2 +y? 4+ 2%)? — 2(32% + 3y% + 22)w = 0.

Figure 11.: An example of the typk,



Figure 12.:
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Figure 13.: An example of the typ# o (z® + % + 2%)? — 2(2® + y*)w = 0.

Figure 14.: An example of the typ# 5 (2® + % + 2%)% + z(2® — 3y*)w = 0.

Figure 15.: An example of the typl 4 (2% +y* + 2%)? — 2(3y* + 2%)w = 0.



Figure 16.: An example of the typl 5 (22 + y* + 2%)? — y%2w = 0.
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Figure 17.: An example of the typl ¢ (2% + 3° + 2%)? — 23w = 0.
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