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Abstract

This paper gives the classification of the 4th order surfacesin E3 which have a
triple point and touch the plane at infinity at the absolute conic. The classification is
made according to the type of the tangent cubic cone at a triple point. Three types
with sixteen subtypes are obtained. For these surfaces the homogeneous and parametric
equations are derived and each type is illustrated withMathematicagraphics.
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1. Introduction

In the real three-dimensional projective spaceP 3(R), in homogeneous Cartesian coordi-
nates(x : y : z : w) 6= (0 : 0 : 0 : 0), (x, y, z ∈ R, w ∈ {0, 1}), equation

Fn(x, y, z, w) = 0, (1)

whereFn is a homogeneous algebraic polynomial of degreen, defines a two-dimensional
extent of pointsΦn which is called annth order surface.

According to [8, p. 268], we can also use the following notation

un + un−1w + ... + un−iw
i + ... + u1w

n−1 + u0w
n = 0, (2)

whereuj, j ∈ {0, 1, ..., n} are homogeneous polynomials inx, y andz of degreej.

Some properties of surfacesΦn, according to [8], [9], [13], [5], are the following:

• Any straight line meets surfaceΦn at n points or lies entirely on the surface. Any plane
cuts surfaceΦn into thenth order plane curve.

• If the polynomialFn can be factorized

Fn(x, y, z, w) = Fn1
(x, y, z, w) · ... · Fnk

(x, y, z, w), n1 + ... + nk = n, (3)

surfaceΦn splits into the surfacesΦn1
,...,Φnk

.
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• Every homogeneous equation inx, y andz:

Fn(x, y, z) = 0 or un = 0, (4)

represents thenth order cone whose vertex is the origin(0 : 0 : 0 : 1)

• PointT = (xT : yT : zT : wT ) which satisfies conditions

Fn(xT , yT , zT , wT ) = 0,

∂Fn

∂x
(T ) 6= 0 ∨

∂Fn

∂y
(T ) 6= 0 ∨

∂Fn

∂z
(T ) 6= 0 ∨

∂Fn

∂w
(T ) 6= 0, (5)

is called the regular point of a surfaceΦn. All tangent lines to a surface at its regular point
form a pencil of lines(T ) in the tangent plane which is given by the following equation:

(x − xT )
∂Fn

∂x
(T ) + (y − yT )

∂Fn

∂y
(T ) + (z − zT )

∂Fn

∂z
(T ) + (w − wT )

∂Fn

∂w
(T ) = 0. (6)

If the originO = (0 : 0 : 0 : 1) is the regular point of surfaceΦn, then

un + .... + u1w
n−1 = 0 (7)

is its equation, and
u1 = 0 (8)

is the equation of the tangent plane of surfaceΦn at the originO.

• PointS = (xS : yS : zS : wS) which satisfies conditions

Fn(xS , yS , zS , wS) = 0,

∂Fn

∂x
(S) =

∂Fn

∂y
(S) =

∂Fn

∂z
(S) =

∂Fn

∂w
(S) = 0, (9)

is called the singular point of surfaceΦn. All tangent lines to a surface at its singular point
form an algebraic cone (called the tangent cone) with the vertexS. If k(1 < k < n) is the
order of a tangent cone, a singular pointS is thek-ple point of surfaceΦn.

If the originO = (0 : 0 : 0 : 1) is thek-ple point of surfaceΦn, then

un + ... + ukwn−k = 0 (10)

is its equation, and
uk = 0 (11)

is the equation of a tangent cone at a singular pointO.

2. Quartics with a triple point

In this paper we use the term“quartic” for the 4th order algebraic surfaces. Quartics with
singular lines can be classified ([9, pp. 200-252], [6, pp. 1537-1787]) in the following way:

- quartics with a triple straight line (the class contains only ruled quartics);
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- quartics with a double twisted cubic (the class contains only ruled quartics);

- quartics with a double conic section (the class contains cyclides);

- quartics with a double conic section and a double line (the class contains only ruled
quartics);

- quartics with three double lines (the class contains ruledand STEINER’ S quartics);

- quartics with two double straight lines (the class contains only ruled quartics);

- quartics with one double straight line (the class containsruled quartics and the sur-
faces considered in [2] and [3]).

On addition to quartics with singular lines, there are quartics with isolated singularities [9,
pp. 238-251]:

- quartics with one triple point;

- quartics with double points (at most sixteen double points- conical points, binodes or
unodes).

Quartics with a triple point are studied in detail by ROHN [7]. If the originO = (0 : 0 : 0 : 1)
is the triple point of quarticΦ4, it is defined by the following equation:

u4 + wu3 = 0, (12)

whereu4, u3 are homogeneous polynomials inx, y andz with degrees 4 and 3, respectively.
u3 = 0 is the equation of the tangent cone at the triple pointO andu4 = 0, w = 0 are
equations of the curve at infinity.

Some properties of these surfaces according to [7] are:

• There is only one triple point on surfaceΦ4. (Quartics with two triple points must
possess a singular line, which joins triple points.)

• There are 12 straight lines(g1, g2, ...., g12) through the triple point, which entirely lie
on surfaceΦ4. They are the intersection of the cones which are given by equations
u4 = 0 andu3 =. Some of those lines can coincide or be imaginary in pairs.

• There are66 =
(

12

2

)

planes (determined by the pairs of linesgi) which cut surfaceΦ4

into the conics through the triple point.

• There are792 =
(

12

5

)

2-order cones (each cone is determined by five linesgi) which
cut surfaceΦ4 into the cubics through the triple point.

• On addition to the triple point, surfaceΦ4 can possess at most 6 real double points.
Those points lie on coinciding linesgi. Double points can be of typeC2 (conical
points) orBk (binodes), wherek is the number of coinciding linesgi. The points
of type U (unodes) exist only in the case when coinciding linesgi are the singular
generator of the tangent cone (u3 = 0) at the triple point.
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3. Classification of cubic cones

According to the NEWTON’ S classification of plane cubics [10, pp. 162-179], [11, pp. 51-
61], there are five types ofdivergent parabolas, which in Cartesian coordinates(x, y),
(x, y ∈ R), can be represented by the equation

y2 = ax3 + bx2 + cx + d. (13)

The classification of those parabolas corresponds to the roots of the following equation:

ax3 + bx2 + cx + d = 0. (14)

1. If equation (14) has three real and different roots, then acurve has an oval and a parabolic
branch. (Fig. 1.1)

2. If equation (14) has one real and two imaginary roots, thena curve has a parabolic branch.
(Fig. 1.2)

3. If equation (14) has two equal real roots which are greaterthan another real root, then a
curve has a self-intersecting parabolic branch (crunodal cubic). (Fig. 1.3)

4. If equation (14) has two equal real roots which are less than another real root, then a
curve has a parabolic branch and an isolated singular point (acnodal cubic). (Fig. 1.4)

5. If equation (14) has three equal real roots, then a curve has a parabolic branch with a
cusp (cuspidal cubic). (Fig. 1.5)

1. 2. 3. 4. 5.

Figure 1.

According to the NEWTON’ S theorem [10, p. 163], every cubic may be projected into one
of the five divergent parabolas. Therefore, every cubic conecan be regarded as the system
of lines which join its vertrex with points of a divergent parabola and its equation may be
brought to the following form:

zy2 = ax3 + bx2z + cxz2 + dz3. (15)

Now we have the following classification of cubic cones givenby equation (15):

1. If equation (14) has three real and different roots, then acone has a twin-pair sheet and a
single sheet. (Fig. 2.1)
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2. If equation (14) has one real and two imaginary roots, thena cone has a single sheet only.
(Fig. 2.2)

3. If equation (14) has two equal real roots which are greaterthan another real root, then a
cone has a crunodal singular generator - a crunodal cubic cone. (Fig. 2.3)

4. If equation (14) has two equal real roots which are less than another real root, then a cone
has an acnodal singular generator - an acnodal cubic cone. (Fig. 2.4)

5. If equation (14) has three equal real roots, then a cone hasa cuspidal singular generator -
a cuspidal cubic cone. (Fig. 2.5)

Figure 2.

4. Quartics in E
3 which have a triple point and touch the

plane at infinity through the absolute conic

In real projective spaceP 3(R) the Euclidean metric defines the absolute conic in the plane
at infinity and it is given by the formulas:x2 + y2 + z2 = 0, w = 0.

Theorem 1 In the 3-dimensional Euclidean space the following equation

F (x, y, z, w) = (x2 + y2 + z2)2 + wu3 = 0, (16)

whereu3 6= (x2 + y2 + z2)u1, andu3, u1 are homogeneous polynomials inx, y andz of
degree 3 and 1 respectively, defines a quartic which has a triple point and touches the plane
at infinity through the absolute conic.

Proof:

Sinceu3 6= (x2 + y2 + z2)u1, the polynomialF (x, y, z, w) is irreducible over the fieldR,
then surfaceΦ4 (defined by equation (16)) is a proper quartic. (Ifu3 = (x2 + y2 + z2)u1,
a quartic splits into the isotropic cone and a sphere throughthe origin.)

According to equations (10) and (11), equation (16) defines aquartic with a triple point at
the origin and the equationu3 = 0 defines a tangent cone at a triple point.

In the plane at infinity quarticΦ4 has the absolute conic ((x2 + y2 + z2)2 = 0, w = 0)
counted twice. It is not a singular line, since for the pointsof the absolute conic it holds
that ∂F

∂x
= ∂F

∂y
= ∂F

∂z
= 0, ∂F

∂w
= u3 6= 0, because we assumeu3 6= (x2 + y2 + z2)u1.

Therefore, according to equation (6), the tangent plane at points on the absolute conic is
defined by the equationw = 0.
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About straight lines and double points on surfacesΦ4

On surfaceΦ4 there are 3 pairs of coinciding isotropic lines which lie in 3planes. They
are the intersection of the isotropic cone and the 3-degree tangent cone with vertexO (x2 +
y2 + z2 = 0, u3 = 0). Since double points always lie on coinciding lines, we canconclude
that there are no real double points on the surfaces given by equation (16).

4.1. Classification of surfacesΦ4

According to the type of the tangent coneT3 (u3 = 0) at the triple point, surfaces given by
equation (16) are classified in the following way:

Type I T is a proper 3-order cone.

I1 T has a twin-pair sheet and a single sheet. (Fig. 3)

I2 T has a single sheet only. (Fig. 4)

I3 T is a crunodal cubic cone. (Fig. 5)

I4 T is an acnodal cubic cone. (Fig. 6)

I5 T a cuspidal cubic cone. (Fig. 7)

Type II T splits into a 2-order coneC and a real planeP .

II 1 C is a real cone andP cuts it into two real and different lines. (Fig. 8)

II 2 C is a real cone andP is its tangent plane. (Fig. 9)

II 3 C is a real cone andP cuts it into a pair of imaginary lines. (Fig. 10)

II 4 C is an imaginary cone. (Fig. 11)

Type III T splits into three planesP1, P2 andP3.

III 1 P1, P2 andP3 are real and different planes with one common point. (Fig. 12)

III 2 P1 is real andP2, P3 are a pair of imaginary planes and they have one common
point. (Fig. 13)

III 3 P1, P2 andP3 are real and diferent planes with one common line. (Fig. 14)

III 4 P1 is real andP2, P3 are a pair of imaginary planes and they have one common
line. (Fig. 15)

III 5 Two of the planesP1, P2, P3 coincide. (Fig. 16)

III 6 The planesP1, P2, P3 coincide. (Fig. 17)
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4.2. Parametric equations of surfacesΦ4

Forw = 1 equation (16) takes the following form:

u4 + u3 = 0. (17)

If we write u3 = T3(x, y, z) and use spherical coordinates(ρ, u, v)

x = ρcosusinv, y = ρsinusinv, z = ρcosv,

equation (17) takes formρ3(ρ + T3(cosusinv, sinusinv, cosv)).

For every point on surfaceΦ4, which is not its triple pointO (ρ = 0), the following relation
holds:

ρ = −T3(cosusinv, sinusinv, cosv). (18)

Therefore, the parametric equations of surfaceΦ4 are:

x(u, v) = −T3(cosusinv, sinusinv, cosv)cosusinv

y(u, v) = −T3(cosusinv, sinusinv, cosv)sinusinv

z(u, v) = −T3(cosusinv, sinusinv, cosv)cosv, u, v ∈ [0, π] × [0, π]. (19)

In a general case ten real numbers define the tangent cone (T3(x, y, z) = 0) at triple point
O(0 : 0 : 0 : 1).

T3(x, y, z) =

a1x
3 + a2x

2
y + a3x

2
z + a4xy

2 + a5xz
2 + a6xyz + a7y

3 + a8y
2
z + a9yz

2 + a10z
3
, (20)

ai ∈ R,∃ai 6= 0.

4.3. Drawing of surfacesΦ4 with Mathematica

The followingMathematicagraphics have been created by using formula (20) and paramet-
ric equations (19).

Figure 3.: An example of the typeI1 (x2 + y2 + z2)2 + (−x3 + 3xz2 − y2z)w = 0.

7





Figure 4.: An example of the typeI2 (x2 + y2 + z2)2 + (x3 − 3y2z + z3)w = 0.

Figure 5.: An example of the typeI3 (x2 + y2 + z2)2 + (x3 + 4x2z − 2y2z)w = 0.

Figure 6.: An example of the typeI4 (x2 + y2 + z2)2 + (x3 − 5x2z − 5y2z)w = 0.

Figure 7.: An example of the typeI5 (x2 + y2 + z2)2 + (x3 − y2z)w = 0.
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Figure 8.: An example of the typeII 1 (x2 + y2 + z2)2 + x(x2 + y2 − 2z2)w = 0.

Figure 9.: An example of the typeII 2 (x2 + y2 + z2)2 + (x − z)(x2 + y2 − z2)w = 0.

Figure 10.: An example of the typeII 3 (x2 + y2 + z2)2 − z(x2 + y2 − z2)w = 0.

Figure 11.: An example of the typeII 4 (x2 + y2 + z2)2 − z(3x2 + 3y2 + z2)w = 0.
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Figure 12.: An example of the typeIII 1 (x2 + y2 + z2)2 + xyzw = 0.

Figure 13.: An example of the typeIII 2 (x2 + y2 + z2)2 − z(x2 + y2)w = 0.

Figure 14.: An example of the typeIII 3 (x2 + y2 + z2)2 + x(x2 − 3y2)w = 0.

Figure 15.: An example of the typeIII 4 (x2 + y2 + z2)2 − z(3y2 + z2)w = 0.
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Figure 16.: An example of the typeIII 5 (x2 + y2 + z2)2 − y2zw = 0.

Figure 17.: An example of the typeIII 6 (x2 + y2 + z2)2 − z3w = 0.
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