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Plenary lectures

Mechanisms and their visualization

Anton Gfrerrer

Institute of Geometry, University of Technology, Graz, Austria

gfrerrer@tugraz.at

A mechanism is an assembly of rigid bodies whose movability is restricted by a set
of joints like revolute, prismatic, universal and spherical joints. An industrial robot
is a typical example. Some other prominent types are the Bennett-mechanism (see
Figure below), the Schatz-mechanism or the mechanisms of Goldberg, each of
them being movable despite having a theoretical degree of freedom (dof) ≤ 0.

It is a major issue in kinematics and robotics to visualize and/or animate mech-
anisms on a computer, for instance to be capable of predicting and estimating their
behavior in reality. In my presentation I discuss how this can be done in different
environments, like CAD-packages for mechanical engineers, CAS-systems like Maple
or standard 3D-environments like VRML (Virtual Reality Modeling Language.)

I will also outline the geometric and kinematic background of certain mecha-
nisms, emphasizing the fact that the knowledge of this background is inevitable for
obtaining appealing results.

Key words: kinematics, robotics, mechanism, VRML, visualization, animation
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An interpolating trigonometric spline curve

Imre Juhász

Department of Descriptive Geometry, University of Miskolc, Miskolc, Hungary

e-mail: agtji@uni-miskolc.hu

Nowadays, in CAD and CAGD the standard description form of curves is

c (t) =

n
∑

i=0

Fi (t)di, t ∈ [a, b] ⊂ R,

where di ∈ R
δ (δ ≥ 2) are called control points, and Fi : [a, b] → R are sufficiently

smooth combining functions. In general, such a curve does not pass through the
control points, it just approximates the shape of the control polygon. However, if
the combining functions are linearly independent, one can always solve the follow-
ing interpolation problem. Given the sequence of data points

{

pi ∈ R
δ
}n

i=0
along

with associated strictly monotone parameter values {ti ∈ [a, b]}n
i=0, find those control

points for which equalities c (ti) = pi, (i = 0, 1, . . . , n) are satisfied. This problem
can be reduced to the solution of a system of linear equations. A drawback of this
method is that the interpolating curve will be globally controlled by data points,
i.e., the displacement of any pi results in the change of the shape of the whole curve,
even if the combining functions are splines.

This disadvantage can be overcome by applying a local interpolation scheme, that
was initiated by Overhauser [1]. He considered a sequence of data points pi with
associated parameter values ti and constructed a C1 cubic interpolating spline curve
the arcs of which are linearly blended parabolas, i.e. each arc is a convex combination
of two parabolic arcs. This blending concept has various generalizations. Their
advantage is that there is no need for solving linear systems, the interpolating curve
can be computed locally, therefore the spline curve is locally modifiable. A drawback
is that, in general, we lose the control point representation when the arcs to be
blended are specified by control points.

Our proposed method combines the advantages of the two options described
above, i.e., it produces the interpolating spline locally and provides directly the
control points of the interpolating arcs with arbitrary order of continuity at joints.
We demonstrate the method for trigonometric curves, namely we consider the
normalized B-basis of the vector space Fα

2n = span {cos (kt) , sin (kt) : t ∈ [0, α]}n
k=0

of trigonometric polynomials of degree at most n, define a proper blending function
using which we can produce the arcs of a Cn interpolating spline curve of degree
n + 1, by blending two first degree trigonometric arcs, where α is a global shape
parameter. Polynomial interpolation can be obtained as the special case α → 0.

Key words: Interpolation, trigonometric spline, blending, shape parameters

MSC 2010: 65D17
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Conics and quadrics for ever

Hellmuth Stachel

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria

e-mail: stachel@geometrie.tuwien.ac.at

Though the history of conics started already about 300 BC, there is still a vivid
interest and research on conics and quadrics. This can be seen from recent publica-
tions on Poncelet porisms, on billiard or on thread constructions of quadrics. The
author himself is also involved in plans for a new book on conics and quadrics jointly
written with Georg Glaeser and Boris Odehnal.

The lecture will pick out some of the raisins from the theory of these remarkable
and decorative geometric objects. By comparing the new methods with classical
results, which mainly originate from the 19th century, we will notice that both have
their advantages. And it is always surprising how variations of classical results give
still rise to new insights.
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Finding principal axes and moments of inertia

Paul Zsombor-Murray

Faculty of Engineering, McGill University, Montréal, Canada

e-mail: paul@cim.mcgill.ca

Inertia moment measurements on an irregular rigid body, e.g., a crankshaft,
about a unique axis has been treated in a recent machine dynamics text [1] and
reference to inertia matrix and ellipsoid is found therein. Similarly, elementary
engineering mechanics books [2] apply the inertia matrix in the study of rotational
dynamics. No experimental method to measure the matrix elements has been
found. Such a method, along with its underlying geometry, is proposed herein.
It uses six optimally distributed rotation axes. The test mass is related to the
inertia ellipsoid via the idea of an orthogonal triple mass dipole to be skew mounted
in a six axis jig, each of its axes to be presented for rotation about a common
axis. Diagonalization of the experimentally determined matrix establishes principal
moments of inertia and their axes. One sees geometrically that what is commonly
called “inertia ellipsoid” is actually a complex conic coplanar with the absolute
conic x2 + y2 + z2 = 0. Diagonals on the four points of intersection of these
curves are lines on two pencils of parallel planes that section the ellipsoid in circles.
A conclusion about how inertia matrix elements may, via the addition of radial
support bearing force sensors, be reduced to a three rotation axis experiment is put
forth.

Key words: inertia, moment, matrix, ellipsoid, measurement
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Figure 3: Inertia ellipsoid with principal planes and axes

Figure 4: Pair of conics sharing a polar triangle
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Contributed talks

Virtual learning environments and online assessment of spatial

abilities

Bernadett Babály

Ybl Miklós Faculty of Architecture and Civil Engineering, Szent István University, Budapest, Hungary

e-mail: babaly.bernadett@ybl.szie.hu

Attila Bölcskei

Ybl Miklós Faculty of Architecture and Civil Engineering, Szent István University, Budapest, Hungary

e-mail: bolcskei.attila@ybl.szie.hu

László Budai

Graduate School for Mathematics and Information Science, Debrecen University, Debrecen, Hungary

e-mail: budai0912@gmail.com

Andrea Kárpáti

Centre for Science Communication, ELTE, Budapest, Hungary

e-mail: andreakarpati.elte@gmail.com

János Katona

Ybl Miklós Faculty of Architecture and Civil Engineering, Szent István University, Budapest, Hungary

e-mail: katona.janos@ybl.szie.hu

Visual skills development and assessment of spatial abilities have particular impor-
tance in different branches of science: they are measured by tests in psychology, and
play significant role in didactics of geometry and visual studies.

Our objective was to develop virtual learning and controlling environments that
fits the demands of training in engineering, and by which students acquire reliable
spatial skills that can be used in practice.

In the first part of the presentation we introduce new tools for geometry ed-
ucation, which were developed at Ybl Miklós Faculty. These are based on digital
course books [1,2], which help the individual understanding almost all basic chapters
of Descriptive Geometry. Since our students have manifested poor performance in
reading and comprehending mathematical texts, we had to involve digital contents
instead. The web pages we created include 14 tasks, each: on the left you can find
a blank problem sheet with the task; on the right there are videos with the solu-
tion. The concept of the digital coursebook was based upon the functionalities of a
professional CAD system in the visualization of spatial problems.

In the second part of the talk we introduce a new, online spatial abilities as-
sessment method. This research is a part of the Developing Diagnostic Assessment
project at the University of Szeged, Center for Research on Learning and Instruction.
We investigated four clusters of spatial skills: spatial positions, relations, directions
- comprehension of structures of 3D shapes - spatial reconstructions - spatial trans-
formations and manipulations. For all these groups we prepared multimodal tasks
using both static and dynamic software [3]. We will present comparison of the two
techniques and introduce the Electronic Diagnostic Assessment System (eDIA).
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Key words: online testing, spatial abilities, virtual learning environment
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From the geometry of quasi-hyperbolic plane

Ivana Božić

Department of Civil Engineering, Polytechnic of Zagreb, Zagreb, Croatia

e-mail: ivana.bozic@tvz.hr

Helena Halas

Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: hhalas@grad.hr

In this presetation the Euclidean model of the extended projective quasi-hyperbolic
plane will be presented. This plane is dual to the pseudo-Euclidean plane. The
absolute figure of the quasi-hyperbolic plane is a triple (j1, j2, F ) where F is a real
point and j1, j2 are pair of real lines through F . Basic elements and constructions
will be shown, as well as duals of some well known theorems from triangle geometry
and theory of conics.

Key words: quasi-hyperbolic plane (qh-plane), perpendicular points, qh-triangle
lines, qh-conics, osculating circles

MSC 2010: 51A051, 51M15
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Education vs profession in architectural domain

locating geometry in the digital delay

Luigi Cocchiarella

Department Architecture and Urban Studies, Politecnico di Milano, Milan, Italy

e-mail: luigi.cocchiarella@polimi.it

The dialogue between “Scientific” and “Professional” worlds will be one of the most
challenging tasks in the future, with refer to Geometry and Graphics.

About Geometry, it seems that it has never found a good location in the archi-
tectural curricula. In the analogue era, it was considered too much “scientific” and
“difficult, while in the digital era it is often considered as something “historical”,
even “too humanistic”, because of the big amount of digital modelers nowadays
available. As a result, both Projective and Descriptive Geometry are disappearing
from the architectural curricula, and the students only tend to use Geometry by try-
ing and retrying through the menu of options displayed on their softwares, instead
of going back to the disciplinary foundations.

Quite paradoxically, the young generations are ending up “using” geometry with-
out “knowing” it, what is, on my opinion, so paradoxical as using a word processor
without knowing a language.

How could this happen?

At least in my Country, one of the reasons may be that the architectural schools
have neglected for a long time digital graphics, that have been developing as a
‘stray’ phenomenon, growing up outside the walls of the university. Thus, in the
hand of the students the digital modelers and the books of geometry remained and
still remain separated. Neither things seem to be better on the side of Graphics,
where the “wild” growth, both of the number of softwares and of the number of
self-taught users, has very quickly canceled and sometimes confused the basic rules
of the graphic codes.

Therefore, also the professional world and the public administration have been
affected by that, with bad consequences, over the times, on the quality of our built
environment.

At this point the question is: catastrophe or opportunity?

It only will depend on us. As we know, the “digital era” has really been rev-
olutionary and, as every revolution, it has implied disruption, similarly to what
happened at the end of the Roman Empire, at the end of the Middle Age, at the
end of the Renaissance, and between the XVIII and the XIX Centuries. But as we
also know, in all these cases the re-birth only depended on “how” the reconstruction
has been leading up.

In other words, while on the one hand the contribution of (our) University has
been quite poor, on the other hand the amount of experiences accumulated in the
real world is very rich, full of hybridizations among codes and languages from which
is possible to take inspiration.
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Of course there will be a lot of work to do, but we can be optimistic because, as
Michel Foucault acutely predicted some decades ago, the disciplinary boundaries are
becoming more and more “permeable” thanks to the new technologies and networks.

But most of all, nowadays the “knowledge management” is more and more
“visual”, what is matter of Geometry and Graphics, and of course and at last, it is
in charge on us, researchers and educators.

Key words: geometry education, graphic education, education and profession

MSC 2010: 97Gxx
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Partridge number of a triangle is at least 4

Viera Čmelková

Faculty of Operation and Economics of Transport and Communications, University of Žilina, Žilina, Slovakia

e-mail: viera.cmelkova@fpedas.uniza.sk

The p-number (Partridge number) of a shape S is the smallest value of n > 1 such,
that 1 copy of S, 2 copies of S scaled by a factor of 2, up to n copies of S scaled by
a factor of n, can be packed without overlap inside a copy of S scaled by a factor

of n(n+1)
2 . The problem of p-number stems from the identity 13 + 23 + ... + n3 =

(1 + 2 + ... + n)2 that tells us that 1 square of side 1, 2 squares of side 2, 3 squares
of side 3, up to n squares of side n have the same total area as a square of side
(1 + 2 + ... + n).

It is known that the p-number of a square is 8, the p-number of an equilateral
triangle is 9, the p-number of right-angled isosceles triangle is 8 and the p-number of
a triangle with inner angles (30◦, 60◦, 90◦) is 4. From there we know, that p-number
of the rectangle is at most 8, but there are known the p-numbers of some special
rectangles and the p-numbers of some special trapezes too.

In this paper I show that the p-number of a general triangle is at least 4.

Key words: p-number, triangle, covering, packing, tiling

MSC 2010: 52C20, 05B45
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Loci of centers of mass of plane figures cut off by a rotating line

Tomislav Došlić

Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: doslic@grad.hr

Let L be a plane figure with a piecewise smooth boundary and p a line in the same
plane. Let p rotate around a fixed point P ∈ p. We investigate various properties
of the trajectories of centers of mass of two segments of L cut by p as it rotates.
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The sophisticated geometry of compound eyes and some

applications in bionics

Georg Glaeser

Department of Geometry, University of Applied Arts Vienna, Vienna, Austria

e-mail: gg@uni-ak.ac.at

Nature has evolved two major kinds of highly efficient eyes in the animal kingdom:
Lens eyes and compound eyes. The latter are characteristic for insects (on land) and
crustacean (in water). In general, the individual “ommatidia” (facets) of compound
eyes are basically hexagonal conic frustums. Some families of crustacean (crayfish
and some shrimps), however, have almost perfect quadratic prisms as ommatidia
which turn out to be of special interest for applications in bionics.

We investigate both kinds of ommatidia and try to explain the effect of so-
called “pseudo pupils”. This effect already allows to classify the different types of
compound eyes (Fig. 1, Fig. 2, [1]).

Surprisingly, crayfish-eyes work like sophisticated optical lenses [3, 5], although
they use a completely different method: Light rays are not refracted but reflected
several times at the reflecting faces of each ommatidium. Amazingly, a more or
less large amount of all passing light rays is thus bundled on a concentric convex
(basically spherical) shape (Fig. 2).

The method of focusing light by means of large series of reflecting quadratic
prisms is currently being introduced to telescopes to exploit tiny amounts of rays
(e.g., X-rays) from outer space [2], or even for new types of cameras [4].

Key words: multiple reflection, mirror optics, bionics

MSC 2010: 51N05, 51P05, 92B05

Figure 1: “Pseudo pupils” of insect eyes – Left: Superposition eye, middle: apposi-
tion eye, right: geometric model of compound eyes with hexagonal ommatidia.
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Figure 2: Multiple reflection in a quadratic prism. Certain rays are reflected twice
as if they were reflected by a single virtual plane. If hundreds or thousands of such
prisms are located on a sphere, incoming parallel light rays of this type are bundled
on a concentric sphere. Such eyes are known with certain types of crustacean.
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Results of Project Introducing 3D Modeling into Geometry Education at

Technical Colleges

Sonja Gorjanc

Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: sgorjanc@grad.hr

Ema Jurkin

Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia

e-mail: ema.jurkin@rgn.hr

During the year 2012 nine members of the Croatian Society for Geometry and Graph-
ics worked on the project Introducing 3D Modeling into Geometry Education at
Technical Colleges supported by the Fund for the Development of the University
of Zagreb. Four faculties were included: Faculty of Architecture, Faculty of Civil
Engineering, Faculty of Geodesy and Faculty of Mining, Geology and Petroleum
Engineering.

The goals of the project were strengthening the professional and scientific co-
operation among the faculties in the area of technical sciences, developing teaching
methodology for 3D computer modeling to enhance the geometry courses, and har-
monization of educational material standards and their further implementation in
the e-learning systems of the included faculties.

The focus of the project was creating a basic repository of educational materials
related to common teaching topics and those customized to profiles of each faculty.
The special emphasis was given to the materials connected to 3D computer modeling.

Until the academic year 2012/2013 Descriptive geometry as a course at the fac-
ulties of the University of Zagreb was mostly taught in the classical way by using
rulers and compasses. Since this year the Rhinoceros program has also been included
in the instruction of the aforementioned course at the Faculty of Civil Engineering
and Faculty of Mining, Geology and Petroleum Engineering.

Here we will present some parts of the educational materials included in the
repository.

Key words: geometry education, e-learning, 3D modeling, Rhinoceros

MSC 2010: 97G80, 97U50
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Computer graphics and descriptive geometry

Daniel Guralumi

Faculty of Architecture and Engineering, Albanian University, Tirana, Albania

e-mail: d.guralumi@albanianuniversity.edu.al

It is now known that the computer has changed the way of architectural represen-
tation. A lot of operations that the software makes are related to the theories of
representation of the orthogonal projections and central projections. The process
of the transformation of axonometric in perspective and vice versa is the subject
of the article seeks to explain all operations to be made through the descriptive
geometry.

Key words: Double central projections, axonometric transformation, perspective

MSC 2010: 51N05
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Modeling some ruled surfaces using Rhino and Grasshopper

Iva Kodrnja

Faculty of Civil Engineering, University of Zagreb, Zagreb, Croatia

e-mail: ikodrnja@grad.hr

Non-developable ruled surfaces (scrolls) can be constructed as a system of
transversals of three space curves. Let the surface be given by three curves c1, c2, c3

which are of order n1, n2, n3 respectively. We denote with nij the number of common
points of ci and cj , i, j = 1, 2, 3 and i 6= j. Then the order of the surface equals
2n1n2n3 − (n23n1 + n13n2 + n12n3).

There are two distinct types of ruled surfaces of order 2: hyperboloid of one
sheet and hyperbolic paraboloid. Surfaces of order 3 have three distinct types, and
of order four there are 12 different types, due to R. Sturm.

We show how some ruled surfaces are constructed using Rhinoceros and
Grasshopper.

Key words: ruled surface, Rhinoceros 5.0, Grasshopper

MSC 2010: 51M15

Figure 1: 4th degree conoid with two parabolas as directing lines.
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An improved method to construct intersection curves of skinning

surfaces
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Joining of given geometric objects is an important part of surface modeling since
in this way more complicated objects can be constructed than the starting forms.
Therefore there is a persistent demand from both designers and users for sophisti-
cated methods which provide more freedom throughout the designing process.

We developed an efficient algorithm [2] for joining skinning surfaces based on
[1]. The algorithm gives visually much more satisfactory results than the presently
available techniques.

We have improved our method and in this presentation we demonstrate a tech-
nique with which we can get better results at the construction of the intersection
curve of the connecting surfaces.

Key words: skinning, spheres, interpolation, joining surfaces, intersection
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2012-0001 National Excellence Program – Elaborating and operating an inland student and

researcher personal support system. The project was subsidized by the European Union and

co-financed by the European Social Fund.

18



Abstracts − 17th Scientific-Professional Colloquium on Geometry and Graphics

Rastoke, September 4 – 8, 2013

The generalization of Szabó’s Theorem for rectangular cuboids

with an example application
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Szabó’s Theorem [1] provides a way to decide when the reference system of a central
axonometric mapping is the central projection of a three dimensional cube. In most
cases we have pictures or photos in which we can see only the image of a rectangular
cuboid instead of a cube.

In this presentation we provide the criterion of when the central axonometry
of a rectangular cuboid is the central projection of a rectangular cuboid. Then we
demonstrate the new theorem’s use in practice through an example application.

Key words: central projection, central axonometry, image processing, 3D recon-
struction
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Bonnet surfaces and harmonic evolutes of surfaces in the

Minkowski 3-space
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A surface S in the Euclidean three-dimensional R3 space is called a Bonnet surface
if it admits a non-trivial 1-parameter family of isometric deformations which
preserve its mean curvature. Bonnet proved that any constant mean curvature
surface which is not totally umbilical is such a surface. The result has been
extended also to constant mean curvature surfaces in real space forms (i.e. in the
completely simply connected Riemannian 3-manifold R3(c) of constant curvature
c, see [5]) and to indefinite space forms R3

1(c) ([3], [4]). In this presentation we will
give an overview of the results on Bonnet surfaces and also describe another special
type of surfaces, so called harmonic evolutes. The harmonic evolute of a surface S
is the locus of points which are harmonic conjugates of a point p ∈ S with respect
to centers of curvature p1, p2 of S. These points are therefore centers of the so
called harmonic spheres, that is, spheres tangent to a surface and whose centers
are exactly harmonic conjugates to points of tangency with respect to centers of
curvatures. Harmonic evolutes of surfaces in Euclidean space have been studied in
[1]. In this presentation we will present results on harmonic surfaces in a special
indefinite space form – in the Minkowski 3-space, as in [7]. Furthermore, we will
investigate their connection to Bonnet surfaces.

Key words: Bonnet surface, harmonic evolute, focal set, Minkowski 3-space
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Densest geodesic ball packings by some ∼SL2R space groups
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In recent works of the authors and other colleagues (Croatian colleagues as well)
some classical Euclidean topics have been raised in the 8 Thurston geometries: E3,
S3, H3, S2 × R, H2 × R, ∼SL2R, Nil and Sol.

In this presentation we overview some concepts of the ∼SL2R geometry in its
projective spherical PS3(V4,VVV 4,∼) interpretation by the real vector space V4 and
its dual VVV 4 with the usual positive real multiplicative equivalence ∼. Thus, the
translation subgroup, the infinitesimal arc-length-square, the geodesic lines, their
spheres and balls can be defined and explicitly determined. The volume of a geodesic
ball is explicit, no more elementary, but straightforward for Maple computations.
We have also attractive pictures by the projective model, so in the Euclidean screen
of computer.

As a new initiative, we examine the classical ball packing problem for the ∼SL2R

space. In particular we consider a space group pq21, generated by a p-rotation a

of angle 2π/p and a q-rotation b, so that their product will be a half-screw h = ab

(symbolically 21). This group can be expressed explicitly in ∼ SL2R with the
defining relation abab = baba =: τ , a translation. Then we can consider a point
K on the p-rotation axis and its orbit under the above group pq21. Moreover, we
take the maximal balls centered in the orbit points, to form a packing with disjoint
interiors of any two balls. We take the so-called Dirichlet-Voronoi cell (D-V cell)
DK for any ball BK , consisting of points, not further from the given ball center K
than to the others from the K-orbit under pq21. The ratio δ = Vol(BK)/Vol(DK)
is called the density of the above ball packing, since it is well-defined and can be
computed by computer, of course, for given integers p, q, where 3 ≤ p, 2p/p − 2 < q
in ∼SL2R.

Similarly defined ball packing densities can be compared for different Thurston
geometries and for their various discrete groups. This topic is under our investiga-
tions with colleagues (you are also invited!).

In this presentation we report new very dense ball packings of ∼ SL2R with
equal geodesic and so-called translation balls, respectively. We look for some p, q
at the above group pq21, where the packing density is close to the density upper
bound 0.85326 for the hyperbolic space H3.

Key words: Thurston geometries, discrete group in ∼SL2R, density of ball packing
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A fast algorithm for finding special isoptic curve of Bézier surfaces
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In computer graphics finding isoptics is a difficult task. For two dimensional curves
there is exact definition: For a given curve, consider the locus of points from where
the tangents to the curve meet at a fixed given angle. From this there is a method
for finding isoptics for Bézier curves [1].

In three dimensions there is no exact definition of isoptics, but we have a
numerical method for finding an isoptic curve for a given surface [2]. The main
problem with this approach is the efficiency. In this algorithm for one isoptic
point we must scan the whole surface. If we want to determine the points
of the isoptic curve more accurately, it slows down the search, since we do
not use the fact that for close points the corresponding tangents are also close.
The new algorithm we present here takes this into account and its speed is increased.

Key words: isoptic curve, Bézier surface
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ometric Design 30 (2013), 78–84.

[2] M. Hoffmann, R. Kunkli, F. Nagy, Method for Optimization of Camera Movement
Path Based on Isoptic Curves, Conference on Geometry: Theory and Applications,
Ljubljana, June 24–28, 2013.

Acknowledgement This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-

2012-0001 National Excellence Program – Elaborating and operating an inland student and

researcher personal support system. The project was subsidized by the European Union and

co-financed by the European Social Fund.

23



Abstracts − 17th Scientific-Professional Colloquium on Geometry and Graphics

Rastoke, September 4 – 8, 2013

Spherical conchoids
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We adapt the well-known concept of the construction of a conchoid curve for
conchoids on the Euclidean unit sphere. Thus, the analoga to the conchoids of lines
in the Euclidean plane are the conchoids of a great circle on the Euclidean unit
sphere. Conchoids of circles on the sphere are then obtained by chosing a circle
(different from a great circle) for a directrix. At hand of the parametrization as
well as the equations of spherical conchoids we describe the algebraic properties of
spherical conchoids. Especially the principal views, i.e., the orthogonal projections
of these spherical curves onto three mutually orthogonal planes of symmetry, are
described in detail.

Key words: Spherical curves, conchoids, algebraic curves, principal views
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Figure 1: Top row: Spherical conchoids of a great circle. Bottom row: Spherical
conchoids of a circle.
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Modeling of higher order surfaces and project of e-course

development
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This paper discusses the problem of accurate CAD modeling of ruled surfaces with
three directing curves. Ruled quartics are classified by Sturm into twelve types [1].
Sturm’s type VII ruled quartic surface is described in this paper. Its constructive
generation is given in the 3D projective space: using directing cone of the surface and
using new directing curves, appropriate for modeling techniques in any CAD-system.

Curvature analysis of the surface is given, using CAD software Rhinoceros. Paper
can facilitate and encourage the introduction of new surfaces in design of architec-
tural structures. It can improve CAD modeling in teaching engineering geometry.

Until year 1989 Descriptive geometry was taught classically at Civil Engineer-
ing Faculty in Rijeka. During the years the author worked on introducing 3D
modeling in geometry courses at the faculty, without any support. Development
of e-courses for geometry started in 2007. In year 2012/13 further development
of e-course Constructive geometry was supported by University of Rijeka, within
the project of e-course development. Educational materials were expanded
with those made in Rhinoceros. Students are free to use any of the three soft-
ware packages (AutoCAD, Rhinoceros and DesignCAD) that are suggested to them
within e-course. Furthermore, links to trial versions of software are given in e-course.

Key words: modeling of ruled quartics, e-learning, 3D modeling, CAD
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On transition curves used in road design
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The paper deals with the area of road design, with special emphasis on curves used
as transition curves. Specifically, these are the clothoid, the lemniscate and the cubic
parabola. The transition curve as a ground element of the road indicates the gradual
transition of the curvature, from that of the straight line to the curvature of the
circle.

This paper links together areas of mathematics, geodesy and civil engineering.
It demonstrates criteria that a particular curve should fulfill in order to become
a transition curve. In addition, the paper gives the mathematical origin of each
curve, its affiliation to a particular family of curves and the emergence of a concrete
subgroup, which is applied as a transition curve.

Application. Transportation indicates displacement or, more precisely, the
spatial movement of people, goods and information. Transportation means and
transportation organization are needed in order for the transportation to function
properly. Transportation means are qualified according to the medium in which
the transportation is taking place. This can be on land, water or in air. Land
transportation requires special infrastructure, and among others, it encompasses
road and railroad transportation. Designing a road is a very complicated procedure,
which is affected by various factors. One of the most important factors is the type
of the road – whether a road or a railroad is in question. Particular parts of the
process are similar, but in certain parts there are big differences. For example,
when designing railroads different transition curves are used than when designing
roads. With railroads the cubic parabola is most commonly used, while with roads
it is the clothoid and the less frequently used lemniscate.

Key words: road design, transition curves, clothoid, lemniscate, cubic parabola
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2-wire planar positioning of the 4-bar coupler curve via the
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A particular direct kinematics problem that pertains to cable driven manipulators is
resolved using a formulation based on the planar kinematic mapping of Blaschke and
Grünwald. This problem has received considerable attention in engineering research
using mechanical statics and optimization. Although the univariate polynomial of
degree 12 has been revealed previous results fail to detect certain solutions that
the geometric approach can handle. To complete the picture, the well known cou-
pler curve of a planar 4-bar mechanism is derived with the kinematic mapping and
advantages of a purely geometric image space formulation are discussed.

To illustrate the relation among the geometry of 2-wire manipulator kinematics,
static equilibrium of concentrated forces in the plane and planar 4-bar linkage
coupler curves, a set of six equilibrium poses of a coupler point G is shown in Fig. 1.
The green arcs of circles centred at A and B are trajectories of 4-bar coupler pins,
one moving on the red link anchored at A the other on the blue link anchored at
B. If point G is taken as the coupler mass centre, at equilibrium it must remain in
a line pencil wherein a vertical line on G must intersect lines of the cables AD and
BE at a common point.

Key words: planar 4-bar, coupler curve, planar kinematic mapping
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Figure 1: 6 possible solutions for the 2-wire 4-bar
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Approximation of B-spline curves or surfaces with third order

continuity
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Our aim is to generate a B-spline curve for approximating given, separately created
B-spline curves. The input curves and the resulting curve are represented by fourth
degree, uniform B-splines. The input curves may join at their end points precisely
or with gaps. The applied approximation technique is minimization of a target
function expressed by squared differences in positions, first and second derivatives
of the input and the resulting curves at their corresponding points. The variables in
this function are the unknown control points of the approximating curve. In the case
of uniform B-splines the coefficients of the basis functions are constant, therefore the
minimization problem can be solved symbolically. In the solution the control points
of the new approximating B-spline curve are expressed as linear combinations of the
input control points. This method is basically different from the stitching method
shown in [1] using interpolation and fairing.

We investigate the approximation error in dependence of the target function and
the number of the considered control points in the region of a merging place. We
apply the best satisfactory scheme to merge B-spline curves or B-spline surfaces.
We show and analyze several solutions.

Key words: B-spline curves and surfaces, approximation
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On hypersphere packings in the 5-dimensional hyperbolic space
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The smallest three hyperbolic compact arithmetic 5-orbifolds can be derived from
two compact Coxeter polytops which are combinatorially simplicial prisms (or com-
plete orthoschemes of degree d = 1) in the five dimensional hyperbolic space H5. The
corresponding hyperbolic tilings are generated by reflections through their delimit-
ing hyperplanes that involve studying the related densest hyperball (hypersphere)
packings with congruent hyperballs.

The analogous problem was discussed in [1] and [2] in the hyperbolic spaces Hn

(n = 3, 4). In this talk we extend this procedure to determine the optimal hyperball
packings to the above 5-dimensional prism tilings. We compute their metric data
and the densities of their optimal hyperball packings, moreover, we formulate a
conjecture for the candidate of the densest hyperball packings in the 5-dimensional
hyperbolic space H5.

Key words: n-dimensional hyperbolic space, hypersphere, packings
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The experience of teaching in English at the Faculty of

Architecture, University of Zagreb
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Geometry in Architecture has been for years an elective course within the pro-
gramme of the Department of Mathematics, Descriptive Geometry and Perspective
at the Faculty of Architecture, University of Zagreb. Since the academic year
2008/2009 it has been an elective course within the Master degree programme of
Architecture and Urban Planning.
In academic year 2012/2013 we have registered for the Application for the course
in foreign language announced by International Relations Office of University of
Zagreb. We have been approved to present this elective course in English. In this
talk we present our teaching experience gained during the course.

Key words: geometry in architecture, teaching in English
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At Ybl Faculty of Szent Istvan University, we renewed the course Space Geometry
with Computers two years ago. This course is intended for students in Architecture,
and this is an optional subject (only those students may sign on it who are interested
in its topics).

The previous course programme was mainly an introduction to 3D solid modeling
with AutoCAD, with an emphasys on such exercises where 3D navigation and 3D
transformations are needed to construct the model.

Now the BSc programme in Architecture at Ybl Faculty includes a basic course
on 2D and 3D AutoCAD. Therefore, it was possible to modify the course programme
of the course Space Geometry with Computers by leaving out the basics of 3D Au-
toCAD. Instead, we are able to do the following:

• we introduce some more sophisticated features of AutoCAD to the students,

• we concentrate more on geometry and not on software, when working on 3D
geometry modeling problems,

• there is enough time to work with other 3D geometry software as well, so the
new course programme includes the use of three software: AutoCAD, Cabri
3D and GeoGebra 5 Beta.

The main course topics are the following:

• modeling convex polyhedra and star polyhedra,

• creating 3D curves with some applications,

• creating 3D surfaces,

• constructing elementary 3D objects from a given set of objects

• constructing complex 3D models,

with some flexibility of subtopics from term to term.

There is a special emphasys on describing the construction steps for the solution
of a problem, in a step-by-step fashion, from the beginning to the end.

I report on my teaching experience and show some models/constructions of the
students created in class and during homework.

Key words: mathematics education, space geometry, AutoCAD, Cabri 3D,
GeoGebra

MSC 2010: 97D30

32



Abstracts − 17th Scientific-Professional Colloquium on Geometry and Graphics

Rastoke, September 4 – 8, 2013

Minkowski triples of point sets

Daniela Velichová
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Concept of Minkowski combinations of two point sets defined in [1] can be used for
introducting a more general concept of Minkowski combinations of several point sets.
Different combinations of set operations Minkowski sum and Minkowski product that
are applied as modelling tool for generating of differentiable manifolds as described
in [2], are used in their basic definitions. Three distinguished forms of multiple
Minkowski set combinations of differentiable manifolds can be studied, while here
wet restrict all considerations to smooth curves E

3 as basic point sets, and definitions
of different Minkowski triples of three curves, in particular.

Minkowski linear triple A⊕B ⊕C, product triple (A⊗B)⊗C and mixed triple
(A⊕B)⊗C of three smooth equally parameterized curves are smooth curves in
the space. Considering different parameterisation of basic curves of 2 different real
parameters t and u, generated differentiable manifolds are smooth surfaces in E

3,
while in the case of 3 different parameters t, u, and v solids in E

3 are determined.
Interesting geometric properties regarding the form of generated differentiable
manifolds can be derived and demonstrated, based on the form of basic curves,
their parameterization and mutual superposition, and positioning in the space.

Key words: Minkowski sum, Minkowski product, Minkowski set operators
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Figure 1: Minkowski linear triple (left), product triple (middle) and mixed triple
(right) of three concentric circles in perpendicular planes
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New animations of symmetric patterns based on space-filling

zonotopes

László Vörös

M. Pollack Faculty of Engineering and Informatics, University of Pécs, Pécs, Hungary

e-mail: vorosl@pmmik.pte.hu

The 3-dimensional framework (3-model) of any k-dimensional cube (k-cube) can
be produced based on starting k edges arranged by rotational symmetry, whose
Minkowski sum can be called zonotope. Combining 2 < j < k edges, we can build 3-
models of j-cubes, as parts of a k-cube. The suitable combinations of these zonotope
models can result in 3-dimensional space-filling mosaics. The investigated periodical
tessellations (up to k = 12) always hold for the 3-model of the k-cube and necessary
j-cubes derived from it. Such a space-filling mosaic can have a fractal structure as
well, since we can replace it with a restructured one, built from multiplied solids.
These are composed by addition of 3-models of k- and j-cubes and are similar to
the original ones. The intersections of the mosaics with planes allow unlimited pos-
sibilities to produce periodical symmetric plane-tiling. Moving of intersection planes
result in series of tessellations or grid-patterns transforming into each other which
can be shown in varied animations.

Planar and spatial symmetry groups are the base of several works in different
branches of art. Our symmetric models of the hypercube and the symmetrically
arranged periodical tessellations offer several binding points to this field. The newer
results can hopefully aid the correspondence between geometry, art and design.

Key words: constructive geometry, hypercube modeling, tessellation, fractal, de-
sign
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Ybl Miklós Faculty, Szent István University, Budapest

babaly.bernadett@ybl.szie.hu

2. Jelena Beban-Brkić
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vorosl@pmmk.pte.hu

40. Paul Zsombor-Murray

Mechanical Engineering, McGill University

paul@cim.mcgill.ca

38


