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Abstract

In this paper we construct a new class of algebraic surfaces in three-dimensional
Euclidean space that are generated by roses. We derive theirparametric and im-
plicit equations, investigate their singularities and visualize them with the program
Mathematica.
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1. Introduction

In [2], by using an(n+2)-degree inversion defined in [1], we elaborated the pedal surfaces
of special first order line congruences. The directing linesof these congruences are roses
given by the polar equationr = cos nϕ, wheren is an odd positive integer. The cases
with special positions of the pole appeared to be very interesting and led us to explore a
new construction of surfaces where the generating curve wasa rose with a finite number
of petals. The resulting surfaces had various attractive shapes, a small number of high
singularities and were convenient for algebraic treatmentand visualization in the program
Mathematica. Another attempt to generalize roses is given in [6].

2. Roses

Roses or rhodonea curvesR(n, d), treated here, can be expressed by the following polar
equation:

r = cos
n

d
ϕ, (1)
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wheren
d

is a positive rational number in the simplest form, i.e.GCD(n, d) = 1.

If n · d is odd, the curves close at polar anglesd · π and haven petals. They are algebraic
curves of the ordern + d, with ann-ple point in the origin and with1

2
n(d − 1) double

points. Ifn · d is even, the curves close at polar angles2d ·π and have2n petals. They are
algebraic curves of the order2(n+d), with a2n-ple point in the origin and with2n(d−1)
double points [5, pp. 358-369], [7], [8], [9] (see Table 1).

n · d order pointO number of double points period number of petals

odd n + d n-ple 1
2
n(d − 1) d · π n

even 2(n + d) 2n-ple 2n(d − 1) 2d · π 2n

Table 1: Properties ofR(n, d)

According to [5] we can derive the following implicit equation ofR(n, d):

(

bd/2c
∑

k=0

k
∑

j=0

(−1)k+j

(

d

2k

)(

k

j

)

(x2 + y2)
n+d

2
−k+j

)s

−
(

bn/2c
∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i
)s

= 0,

(2)
wheres = 1 if n · d is odd ands = 2 if n · d is even.

According to [4, p. 251]1, the tangent lines at the origin are given by the following equa-
tions:

- if n · d is odd
bn/2c
∑

k=0

(−1)k

(

n

2k

)

xn−2ky2k = 0, (3)

- if n is even
(

bn/2c
∑

k=0

(−1)k

(

n

2k

)

xn−2ky2k
)2

= 0, (4)

- if d is even (bd
2
c = d

2
)

(x2 + y2)n −
(

bn/2c
∑

k=0

(−1)k

(

n

2k

)

xn−2ky2k
)2

= 0. (5)

1See the quotation that follows in the proof of theorem 1.
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Figure 1: Ifn is odd, the roseR(n, 1) is ann−petalled curve withn tangent lines at the
origin (Figs. a and b). Ifn is even, the roseR(n, 1) is an2n−petalled curve withn double
tangent lines at the origin (Figs. c and d).
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Figure 2: Ifd is odd, the roseR(1, d) has only one petal (Figs. a and b). Ifd is even, the
roseR(1, d) has two petals (Figs. c and d).
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Figure 3: Four roses with petals in different colors.

3. Rose Surfaces

Definition 1 Let P (0, 0, p) be any point on the axis z and let R(n, d) be a rose given by
eq. (1) in the plane z = 0. A rose surface R(n, d, p) is the system of circles ci which
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lie in the planes ζ through the axis z and have diameters PRi, where Ri 6= O are the
intersection points of the rose R(n, d) and the plane ζ (see Fig. 4).

Figure 4: Ifn · d is odd or even, the number of pointsRi ∈ ζ is d or 2d, respectively.

3.1. Parametric equations ofR(n, d, p)

Let ϕ be the angle between the planesζ(ϕ) andy = 0. The parametric equations of the
circle c with the diameterPR in the planeζ(ϕ) are the following:

r =
1

2
cos

n

d
ϕ +

√

p2 + cos2
n

d
ϕ sin θ)

z =
1

2
(p +

√

p2 + cos2
n

d
ϕ cos θ), θ ∈ [0, 2π), (6)

whereϕ ∈ [0, d · π) if n · d is odd, andϕ ∈ [0, 2d · π) if n · d is even.

Therefore, the parametric equations of the rose surfaceR(n, d, p) are the following:

x =
1

2
cos ϕ(cos

n

d
ϕ +

√

p2 + cos2
n

d
ϕ sin θ)

y =
1

2
sin ϕ(cos

n

d
ϕ +

√

p2 + cos2
n

d
ϕ sin θ)

z =
1

2
(p +

√

p2 + cos2
n

d
ϕ cos θ), (7)
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where(ϕ, θ) ∈ [0, d · π)× [0, 2π) if n · d is odd, and(ϕ, θ)) ∈ [0, 2d · π)× [0, 2π) if n · d
is even.

Equations (7) allow forMathematica visualizations of surfacesR(n, d, p), see [3].

3.2. Implicit equations ofR(n, d, p)

From the identitycos dn
d
ϕ = cos nϕ and multiple angle formula

cos nϕ =
∑bn/2c

i=0 (−1)i
(

n
2i

)

(sin ϕ)2i(cos ϕ)n−2i we obtain

bd/2c
∑

k=0

(−1)k

(

d

2k

)

(sin
n

d
ϕ)2k(cos

n

d
ϕ)d−2k =

bn/2c
∑

i=0

(−1)i

(

n

2i

)

(sin ϕ)2i(cos ϕ)n−2i. (8)

Since the implicite equation of the circlec in the planeζ(ϕ) is

(

r − cos n
d
ϕ

2

)2

+
(

z − p

2

)2

=
1

4
(cos2 n

d
ϕ + p2), (9)

by substitutingr =
√

x2 + y2 in (9), we obtain the following conditions for the points of
R(n, d, p):

cos
n

d
ϕ =

x2 + y2 + z2 − p · z
√

x2 + y2
, sin

n

d
ϕ =

√

1 − (x2 + y2 + z2 − p · z)2

x2 + y2
. (10)

By substituting (10) andcos ϕ = x√
x2+y2

, sin ϕ = y√
x2+y2

into equation (8), we obtain

the following algebraic equations:

(x2 + y2)
s(n−d)

2





b d
2
c

∑

k=0

k
∑

j=0

(−1)k+j

(

d

2k

)(

k

j

)

(x2 + y2 + z2 − p · z)d−2(k−j)(x2 + y2)k−j





s

=





bn
2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i





s

, (11)





b d
2
c

∑

k=0

k
∑

j=0

(−1)k+j

(

d

2k

)(

k

j

)

(x2 + y2 + z2 − p · z)d−2(k−j)(x2 + y2)k−j





s

=(x2 + y2)
s(d−n)

2





bn
2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i





s

, (12)

5



wheres = 1 if n · d is odd, ands = 2 if n · d is even.

Equations (11) and (12) are the implicit equations ofR(n, d, p) for n > d andn < d,
respectively.

3.3. Properties ofR(n, d, p)

Theorem 1 For rose surfaces R(n, d, p), the following table is valid:

n · d order pointsO andP axisz double circles inζ

odd n > d n + d n-ple (n − d)-ple 1
2
n(d − 1)

even n > d 2(n + d) 2n-ple 2(n − d)-ple n(2d − 1)

odd n < d 2d d-ple 0-ple 1
2
n(d − 1)

even n < d 4d 2d-ple 0-ple n(2d − 1)

A B C D

Table 2: Properties ofR(n, d, p).

PROOF:

adA The order of an algebraic surface is equal to the degree of itsalgebraic equation. In
eqs. (11) and (12) the terms with the highest exponents (fork = j) are
(

2d−1(x2 + y2)
n−d

2 (x2 + y2 + z2)d
)s

and
(

2d−1(x2 + y2 + z2)d
)s

− (x2 + y2)
s(d−n)

2

(

∑bn
2
c

i=0(−1)i
(

n
2i

)

xn−2iy2i
)s

, respectively.

adB According to [4, p.251]: If annth order surface inE3 which passes through the
origin is given by the equation

F (x, z, y) = fm(x, y, z) + fm+1(x, y, z) + · · · + fn(x, y, z) = 0,
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wherefk(x, y, z) (1 ≤ k ≤ n) are homogeneous polynomials of degreek, then the
tangent cone at the origin is given by the equationfm(x, y, z) = 0.

Therefore, the tangent cones ofR(n, d, p) given by eqs. (11) and (12) at their points
O andP are given by the following equations:





b d
2
c

∑

k=0

k
∑

j=0

(−1)k+j

(

d

2k

)(

k

j

)

(∓p · z)d−2(k−j)(x2 + y2)
n−d+2(k−j)

2





s

−





bn
2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i





s

= 0, (13)





b d
2
c

∑

k=0

k
∑

j=0

(−1)k+j

(

d

2k

)(

k

j

)

(∓p · z)d−2(k−j)(x2 + y2)k−j





s

−





bn
2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i(x2 + y2)
d−n

2





s

= 0, (14)

respectively.

In these equations,−p · d corresponds with the pointO, and+p · d with the point
P as the origin.

adC If R(n, d, p) is given by eq. (11), any pointZ0(0, 0, z0) lies on the surface and the
tangent cone atZ0, with the origin translated intoZ0, is given by the following
equation:

(x2 + y2)
s(n−d)

2 = 0. (15)

This equation represents thes(n−d)
2

-ple pair of isotropic planes through the axisz.

If R(n, d, p) is given by eq. (12), it is clear that a pointZ0(0, 0, z0) on the axisz
lies onR(n, d, p) iff z2

0 − p · z0 = 0, i.e. Z0 = O or Z0 = P .

Ad D The circlec in the planeζ is the double curve ofR(n, d, p) iff the intersection point
of ζ andR(n, d) is the double point ofR(n, d). Thus, the number of double circles
onR(n, d, p) is equal to the number of double points ofR(n, d) if n · d is odd. But,
if n · d is even, othern double circles in the planesζ exist onR(n, d, p). These
circles lie in the planes through the double tangent lines ofR(n, d) at O and their
diameters areOP . If O = P , these circles degenerate into the pairs of isotropic
lines. �

7



Corollary 1 If p = 0, the tangent cone of R(n, d, p) at O = P splits into n or d planes.

PROOF: If p = 0, eqs. (13) and (14) take the following forms:




bn

2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i





s

= 0, (16)





bn

2
c

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i(x2 + y2)
d−n

2





s

= 0, (17)

respectively.

Since the polynomials in these equations arenth (eq. 16) ordth (eq. 17) degree homo-
geneous inx andy, therefore they can be reduced to linear and quadratic factors. These
factors equal to 0 representn or d planes (real or imaginary) through the axisz. �

3.4. Visualizations ofR(n, d, p)

The following figures are computed and plotted by the software Mathematica.

Figure 5: Ifd = 1 andp 6= 0, the tangent cones at the pointsO andP are proper cones.
If n is odd, there are no double circles onR(n, 1, p). If n is even,2n double circles exist
onR(n, 1, p).
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Figure 6: Ifd = 1 andp = 0, the tangent cones atO split inton planes. Ifn is even, these
planes are the double tangent planes ofR(n, 1, 0).

Figure 7: Four rose surfaces.
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