Rose Surfaces and their Visualizations

Sonja Gorjanc
Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia
sgorjanc@grad.hr

Abstract

In this paper we construct a new class of algebraic surfaces in three-dimensional Euclidean space that are generated by roses. We derive their parametric and implicit equations, investigate their singularities and visualize them with the program Mathematica.

Keywords: Rose curve, Rose surface, Singular point
MSC 2000: 51N20, 51M15, 14J25, 14J17

1. Introduction

In [2], by using an \((n+2)\)-degree inversion defined in [1], we elaborated the pedal surfaces of special first order line congruences. The directing lines of these congruences are roses given by the polar equation \(r = \cos n\varphi\), where \(n\) is an odd positive integer. The cases with special positions of the pole appeared to be very interesting and led us to explore a new construction of surfaces where the generating curve was a rose with a finite number of petals. The resulting surfaces had various attractive shapes, a small number of high singularities and were convenient for algebraic treatment and visualization in the program Mathematica. Another attempt to generalize roses is given in [6].

2. Roses

Roses or rhodonea curves \(R(n, d)\), treated here, can be expressed by the following polar equation:

\[
r = \cos \frac{n}{d} \varphi, \tag{1}
\]
where \(\frac{n}{d} \) is a positive rational number in the simplest form, i.e. \(\text{GCD}(n, d) = 1 \).

If \(n \cdot d \) is odd, the curves close at polar angles \(d \cdot \pi \) and have \(n \) petals. They are algebraic curves of the order \(n + d \), with an \(n \)-ple point in the origin and with \(\frac{1}{2} n(d - 1) \) double points. If \(n \cdot d \) is even, the curves close at polar angles \(2d \cdot \pi \) and have \(2n \) petals. They are algebraic curves of the order \(2(n + d) \), with a \(2n \)-ple point in the origin and with \(2n(d - 1) \) double points \([5, pp. 358-369]\), \([7]\), \([8]\), \([9]\) (see Table 1).

\[
\begin{array}{|c|c|c|c|c|}
\hline
n \cdot d & \text{order} & \text{point } O & \text{number of double points} & \text{period} & \text{number of petals} \\
\hline
\text{odd} & n + d & n\text{-ple} & \frac{1}{2} n(d - 1) & d \cdot \pi & n \\
\hline
\text{even} & 2(n + d) & 2n\text{-ple} & 2n(d - 1) & 2d \cdot \pi & 2n \\
\hline
\end{array}
\]

Table 1: Properties of \(R(n, d) \)

According to \([5]\) we can derive the following implicit equation of \(R(n, d) \):

\[
\left(\sum_{k=0}^{\left\lfloor d/2 \right\rfloor} \sum_{j=0}^{k} (-1)^{k+j} \binom{d}{2k} \binom{k}{j} (x^2 + y^2)^{\frac{n+d}{2} - k+j} \right) s - \left(\sum_{i=0}^{\left\lfloor n/2 \right\rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} \right) s = 0,
\]

where \(s = 1 \) if \(n \cdot d \) is odd and \(s = 2 \) if \(n \cdot d \) is even.

According to \([4, p. 251]\)\(^{1}\), the tangent lines at the origin are given by the following equations:

- if \(n \cdot d \) is odd

\[
\sum_{k=0}^{\left\lfloor n/2 \right\rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k} = 0,
\]

(3)

- if \(n \) is even

\[
\left(\sum_{k=0}^{\left\lfloor n/2 \right\rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k} \right)^2 = 0,
\]

(4)

- if \(d \) is even (\(\left\lfloor d/2 \right\rfloor = \frac{d}{2} \))

\[
(x^2 + y^2)^n - \left(\sum_{k=0}^{\left\lfloor n/2 \right\rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k} \right)^2 = 0.
\]

(5)

\(^{1}\)See the quotation that follows in the proof of theorem 1.
Figure 1: If n is odd, the rose $R(n, 1)$ is an n—petalled curve with n tangent lines at the origin (Figs. a and b). If n is even, the rose $R(n, 1)$ is an $2n$—petalled curve with n double tangent lines at the origin (Figs. c and d).

Figure 2: If d is odd, the rose $R(1, d)$ has only one petal (Figs. a and b). If d is even, the rose $R(1, d)$ has two petals (Figs. c and d).

Figure 3: Four roses with petals in different colors.

3. Rose Surfaces

Definition 1 Let $P(0, 0, p)$ be any point on the axis z and let $R(n, d)$ be a rose given by eq. (1) in the plane $z = 0$. A rose surface $\mathcal{R}(n, d, p)$ is the system of circles c_i which
lie in the planes \(\zeta \) through the axis \(z \) and have diameters \(\overline{PR_i} \), where \(R_i \neq O \) are the intersection points of the rose \(R(n, d) \) and the plane \(\zeta \) (see Fig. 4).

Figure 4: If \(n \cdot d \) is odd or even, the number of points \(R_i \in \zeta \) is \(d \) or \(2d \), respectively.

3.1. Parametric equations of \(\mathcal{R}(n, d, p) \)

Let \(\varphi \) be the angle between the planes \(\zeta(\varphi) \) and \(y = 0 \). The parametric equations of the circle \(c \) with the diameter \(\overline{PR} \) in the plane \(\zeta(\varphi) \) are the following:

\[
\begin{align*}
r &= \frac{1}{2} \cos \frac{n}{d} \varphi + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi \sin \theta} \\
z &= \frac{1}{2} (p + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi \cos \theta}), \quad \theta \in [0, 2\pi),
\end{align*}
\]

where \(\varphi \in [0, d \cdot \pi) \) if \(n \cdot d \) is odd, and \(\varphi \in [0, 2d \cdot \pi) \) if \(n \cdot d \) is even.

Therefore, the parametric equations of the rose surface \(\mathcal{R}(n, d, p) \) are the following:

\[
\begin{align*}
x &= \frac{1}{2} \cos \varphi (\cos \frac{n}{d} \varphi + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi \sin \theta}) \\
y &= \frac{1}{2} \sin \varphi (\cos \frac{n}{d} \varphi + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi \sin \theta}) \\
z &= \frac{1}{2} (p + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi \cos \theta}),
\end{align*}
\]
where \((\varphi, \theta) \in [0, d \cdot \pi) \times [0, 2\pi)\) if \(n \cdot d\) is odd, and \((\varphi, \theta) \in [0, 2d \cdot \pi) \times [0, 2\pi)\) if \(n \cdot d\) is even.

Equations (7) allow for Mathematica visualizations of surfaces \(\mathcal{R}(n, d, p)\), see [3].

3.2. Implicit equations of \(\mathcal{R}(n, d, p)\)

From the identity \(\cos \frac{d}{2} \varphi = \cos n \varphi\) and multiple angle formula

\[
\cos n \varphi = \sum_{i=0}^{[n/2]} (-1)^i \binom{n}{2i} (\sin \varphi)^{2i} (\cos \varphi)^{n-2i}
\]

we obtain

\[
\sum_{k=0}^{[d/2]} (-1)^k \binom{d}{2k} \left(\sin \frac{n}{d} \varphi \right)^{2k} (\cos \frac{n}{d} \varphi)^{d-2k} = \sum_{i=0}^{[n/2]} (-1)^i \binom{n}{2i} (\sin \varphi)^{2i} (\cos \varphi)^{n-2i}. \quad (8)
\]

Since the implicit equation of the circle \(c\) in the plane \(\zeta(\varphi)\) is

\[
\left(r - \frac{\cos \frac{n}{d} \varphi}{2} \right)^2 + \left(z - \frac{p}{2} \right)^2 = \frac{1}{4} \left(\cos^2 \frac{n}{d} \varphi + p^2 \right), \quad (9)
\]

by substituting \(r = \sqrt{x^2 + y^2}\) in (9), we obtain the following conditions for the points of \(\mathcal{R}(n, d, p)\):

\[
\cos \frac{n}{d} \varphi = \frac{x^2 + y^2 + z^2 - p \cdot z}{\sqrt{x^2 + y^2}}, \quad \sin \frac{n}{d} \varphi = \sqrt{1 - \frac{(x^2 + y^2 + z^2 - p \cdot z)^2}{x^2 + y^2}}. \quad (10)
\]

By substituting (10) and \(\cos \varphi = \frac{x}{\sqrt{x^2+y^2}}, \sin \varphi = \frac{y}{\sqrt{x^2+y^2}}\) into equation (8), we obtain the following algebraic equations:

\[
(x^2 + y^2)^{s(d-n)} \left(\sum_{k=0}^{[d/2]} \binom{d}{2k} \left(\frac{n}{2d} \right)^{k-j} \left(\frac{n}{2d} \right)^{j-k} \right)^s = \sum_{i=0}^{[n/2]} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}.
\]

\[
(x^2 + y^2)^{s(d-n)} \left(\sum_{k=0}^{[d/2]} \binom{d}{2k} \left(\frac{n}{2d} \right)^{k-j} \left(\frac{n}{2d} \right)^{j-k} \right)^s = \sum_{i=0}^{[n/2]} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}.
\]

\[
(x^2 + y^2)^{s(d-n)} \left(\sum_{k=0}^{[d/2]} \binom{d}{2k} \left(\frac{n}{2d} \right)^{k-j} \left(\frac{n}{2d} \right)^{j-k} \right)^s = \sum_{i=0}^{[n/2]} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}.
\]
where \(s = 1 \) if \(n \cdot d \) is odd, and \(s = 2 \) if \(n \cdot d \) is even.

Equations (11) and (12) are the implicit equations of \(R(n, d, p) \) for \(n > d \) and \(n < d \), respectively.

3.3. Properties of \(R(n, d, p) \)

Theorem 1 For rose surfaces \(R(n, d, p) \), the following table is valid:

\[
\begin{array}{|c|c|c|c|c|}
\hline
n \cdot d & \text{order} & \text{points } O \text{ and } P & \text{axis } z & \text{double circles in } \zeta \\
\hline
\text{odd} & n > d & n + d & n\text{-ple} & (n - d)\text{-ple} & \frac{1}{2}n(d - 1) \\
\hline
\text{even} & n > d & 2(n + d) & 2n\text{-ple} & 2(n - d)\text{-ple} & n(2d - 1) \\
\hline
\text{odd} & n < d & 2d & d\text{-ple} & 0\text{-ple} & \frac{1}{2}n(d - 1) \\
\hline
\text{even} & n < d & 4d & 2d\text{-ple} & 0\text{-ple} & n(2d - 1) \\
\hline
\end{array}
\]

Table 2: Properties of \(R(n, d, p) \).

Proof:

ad A The order of an algebraic surface is equal to the degree of its algebraic equation. In eqs. (11) and (12) the terms with the highest exponents (for \(k = j \)) are

\[
\left(2^{d-1}(x^2 + y^2)^{\frac{n-d}{2}}(x^2 + y^2 + z^2)^d\right)^s
\]

and

\[
\left(2^{d-1}(x^2 + y^2 + z^2)^d\right)^s - (x^2 + y^2)^{\frac{d(n-a)}{2}} \left(\sum_{i=0}^{\lfloor \frac{a}{2} \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} \right)^s,
\]

ad B According to [4, p.251]: If an \(n \)th order surface in \(\mathbb{E}^3 \) which passes through the origin is given by the equation

\[
F(x, z, y) = f_m(x, y, z) + f_{m+1}(x, y, z) + \cdots + f_n(x, y, z) = 0,
\]
where \(f_k(x, y, z) (1 \leq k \leq n) \) are homogeneous polynomials of degree \(k \), then the tangent cone at the origin is given by the equation \(f_n(x, y, z) = 0 \).

Therefore, the tangent cones of \(\mathcal{R}(n, d, p) \) given by eqs. (11) and (12) at their points \(O \) and \(P \) are given by the following equations:

\[
\left(\sum_{i=0}^{\left\lfloor d^2/2 \right\rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} (x^2 + y^2)^{\frac{d-n}{2}} \right)^s = 0, \
\left(\sum_{k=0}^{\left\lfloor n^2/2 \right\rfloor} (-1)^k \binom{n}{2k} (x^2 + y^2)^{\frac{n-d+2(k-j)}{2}} \right)^s = 0,
\]

respectively.

In these equations, \(-p \cdot d\) corresponds with the point \(O \), and \(+p \cdot d\) with the point \(P \) as the origin.

Ad C If \(\mathcal{R}(n, d, p) \) is given by eq. (11), any point \(Z_0(0, 0, z_0) \) lies on the surface and the tangent cone at \(Z_0 \), with the origin translated into \(Z_0 \), is given by the following equation:

\[
(x^2 + y^2)^{\frac{a(n-d)}{2}} = 0.
\]

This equation represents the \(\frac{a(n-d)}{2} \)-ple pair of isotropic planes through the axis \(z \).

If \(\mathcal{R}(n, d, p) \) is given by eq. (12), it is clear that a point \(Z_0(0, 0, z_0) \) on the axis \(z \) lies on \(\mathcal{R}(n, d, p) \) iff \(z_0^2 - p \cdot z_0 = 0 \), i.e. \(Z_0 = O \) or \(Z_0 = P \).

Ad D The circle \(c \) in the plane \(\zeta \) is the double curve of \(\mathcal{R}(n, d, p) \) iff the intersection point of \(\zeta \) and \(R(n, d) \) is the double point of \(R(n, d) \). Thus, the number of double circles on \(\mathcal{R}(n, d, p) \) is equal to the number of double points of \(R(n, d) \) if \(n \cdot d \) is odd. But, if \(n \cdot d \) is even, other \(n \) double circles in the planes \(\zeta \) exist on \(\mathcal{R}(n, d, p) \). These circles lie in the planes through the double tangent lines of \(R(n, d) \) at \(O \) and their diameters are \(OP \). If \(O = P \), these circles degenerate into the pairs of isotropic lines. \(\square \)
Corollary 1 If $p = 0$, the tangent cone of $\mathcal{R}(n, d, p)$ at $O = P$ splits into n or d planes.

Proof: If $p = 0$, eqs. (13) and (14) take the following forms:

\[
\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} \right)^s = 0, \tag{16}
\]

\[
\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} (x^2 + y^2)^{\frac{d}{2i}} \right)^s = 0, \tag{17}
\]

respectively.

Since the polynomials in these equations are nth (eq. 16) or dth (eq. 17) degree homogeneous in x and y, therefore they can be reduced to linear and quadratic factors. These factors equal to 0 represent n or d planes (real or imaginary) through the axis z.

\[\square\]

3.4. Visualizations of $\mathcal{R}(n, d, p)$

The following figures are computed and plotted by the software *Mathematica*.

Figure 5: If $d = 1$ and $p \neq 0$, the tangent cones at the points O and P are proper cones. If n is odd, there are no double circles on $\mathcal{R}(n, 1, p)$. If n is even, $2n$ double circles exist on $\mathcal{R}(n, 1, p)$.
Figure 6: If $d = 1$ and $p = 0$, the tangent cones at O split into n planes. If n is even, these planes are the double tangent planes of $\mathcal{R}(n, 1, 0)$.

Figure 7: Four rose surfaces.

References

Figure 8: Seven rose surfaces.

[6] "Twisting Rose Surfaces” from The Wolfram Demonstrations Project
 http://demonstrations.wolfram.com/TwistingRoseSurfaces/
 Contributed by: George Back

 http://mathworld.wolfram.com/Rose.html
