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The Riemannian manifold (M, g) is called homogeneous if for any x, y ∈ M there
exists an isometry Φ : M →M such that y = Φ(x).

In 1982 W. Thurston conjectured that any maximal, simply connected, three-
dimensional geometry which admits a compact quotient is equivalent to one of the
eight homogeneous geometries

E3, S3, H3, S2 × R, H2 × R, ˜SL(2,R),Nil,Sol.

In 2003 G. Perelman sketched a proof of the Thurston geometrization conjecture
using Ricci flow with surgery.

In this lecture we will briefly describe each of the eight homogeneous geometries
considering their basic properties. We will devote special attention to understanding
of isometry groups of these geometries. We will discuss homogeneous geometries in
light of Cayley’s famous phrase “projective geometry is all geometry”.

The lecture will also outline few important examples of surfaces in twisted

product homogeneous geometries ( ˜SL(2,R),Nil,Sol) e.g. minimal surfaces, CMC
surfaces, parallel surfaces etc.
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