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Preface

It has become something of a tradition – if repeating it three times makes
it one – to begin by saying that writing the preface is always a pleasure for
me. The last three prefaces started with that very sentence, and I see no
reason to break the pattern now. It truly is a joy to witness the collective
efforts of so many authors, reviewers, and editors come to fruition in this
fifth volume of the CroCoDays conference proceedings.
Even more so, it is a pleasure to extend my sincere thanks to everyone who
made this volume possible. First and foremost, I would like to thank the
authors for sharing their research and choosing our Proceedings as their
publication venue. In today’s increasingly competitive academic environ-
ment, this choice is a meaningful vote of confidence, and their contributions
are vital to the continued relevance and vibrancy of our conference series. I
hope their work inspires readers to explore the results further and, hopefully,
even initiate new collaborations.
I am also deeply grateful to our referees, whose timely and constructive
reviews enhanced the quality of the accepted papers. Thanks are due as
well to all conference participants – whether or not they submitted written
contributions – for their presentations, discussions, and engagement, which
helped make CroCoDays a lively and intellectually stimulating event.
Special thanks go to our Editor, Luka Podrug, for handling not only the
technical preparation of this volume, but also many other behind-the-scenes
details.
As in previous years, neither the conference nor this volume would have
been possible without the generous support of our sponsors. I gratefully ac-
knowledge the financial, logistical, and technical support of the Faculty of
Civil Engineering. The publication of the Proceedings was partially funded
by a grant from the Foundation of the Croatian Academy of Sciences and
Arts. We also appreciate the Zagreb Tourist Board for providing promo-
tional materials for our participants.
Finally, I thank ChatGPT for polishing my initial draft.
This volume is freely available on the conference website. Please feel wel-
come to share it with colleagues who might be interested in joining us in
the future.
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I look forward to seeing all of you—and many new faces—at the next CroCo-
Days conference, scheduled for September 2026, and at many more confer-
ences to come.

Zagreb, June 16, 2025 Tomislav Došlić
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A Note on the r-Stirling Numbers of the First
Kind

Petra Marija De Micheli Vitturi and Ivica Martinjak

Abstract
We study a generalization of Stirling numbers characterized by a prop-
erty of having elements 1 through r in different cycles of a permuta-
tion. Motivated by the known explicit formulae for the Stirling num-
bers of the first kind, we derive an explicit expression for the r-Stirling
numbers. In addition, we establish an alternating sum identity involv-
ing these sequences of numbers.

Keywords: Stirling numbers, Pascal type array, permutation, binomial
coefficients

1 Introduction

The Stirling number of the first kind, denoted by
[n
k

]
, is the number of

permutations of the set {1, 2, . . . , n} with k disjoint cycles [7]. By placing
a condition on certain elements, we obtain a generalized version of these
numbers. For a positive integer r, the r-Stirling number of the first kind,
denoted by

[n
k

]
r
, is the number of permutations of the set {1, 2, . . . , n} with

k disjoint cycles such that the elements 1, 2, . . . , r appear in distinct cycles.
Note that for r = 1, this definition recovers the Stirling numbers of the first
kind, that is, [

n

k

]
1

=
[
n

k

]
.

An explicit expression for k = r follows directly from the definition, i. e.
the number of permutations in the set {1, 2, . . . , n} with r disjoint cycles

(Petra Marija De Micheli Vitturi) University of Split, Croatia, pgojun@fesb.hr
(Ivica Martinjak) University of Dubrovnik, Croatia, imartinjak@unidu.hr
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such that the elements 1, 2, . . . , r are in distinct cycles is equal to[
n

r

]
r

= (n− 1)!
(r − 1)!

. (1.1)

Namely, we begin by placing the elements 1, 2, . . . , r into r distinct cycles

(1 · · · )(2 · · · ) · · · (r · · · )︸ ︷︷ ︸
r

.

Next, we insert the remaining elements one by one. For element r+1, there
are r possible positions. After r + 1 is placed, to place element r + 2 there
are r + 1 possibilities. Continuing in the same fashion, each new element
has one more position available than the previous one, up to the element n,
which has n − 1 possible positions. By the product rule, the total number
of such permutations is

r · (r + 1) · · · (n− 1) = (n− 1)!
(r − 1)!

.

Furthermore, r-Stirling numbers of the first kind satisfy a recurrence relation[
n+ 1
k

]
r

=
[

n

k − 1

]
r

+ n

[
n

k

]
r

(1.2)

with [
n

k

]
r

= 0 for n < r

and [
n

k

]
r

= δk,r for n = r,

where δk,r = if k 6= r and δk,r = 1 if k = r. This recurrence follows by the
same counting argument as the recurrence for the Stirling numbers of the
first kind.
Using the recurrence relation (1.2), one can easily compute the values of[n
k

]
r

for various values of n, k, and r. Tables 1 and 2 present the first few
numbers for r = 2 and r = 3, respectively.
Santmyer introduced curious sequences of rational numbers and used them
to derive relations between Stirling numbers of the first kind and generalized
harmonic numbers [11]. Benjamin, Preston, and Quinn studied the set Tn of
permutations of the numbers 1 through n into two disjoint, nonempty cycles.
By enumerating this set, they obtained identities for Stirling numbers of the

2
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n\k 2 3 4 5 6 7
2 1 0 0 0 0 0
3 2 1 0 0 0 0
4 6 5 1 0 0 0
5 24 26 9 1 0 0
6 120 154 71 14 1 0
7 720 1044 580 155 20 1

Table 1: The 2-Stirling numbers of the first kind.

n\k 3 4 5 6 7 8
3 1 0 0 0 0 0
4 3 1 0 0 0 0
5 12 7 1 0 0 0
6 60 47 12 1 0 0
7 360 342 119 18 1 0
8 2520 2754 1175 245 25 1

Table 2: The 3-Stirling numbers of the first kind.

first kind having the lower index k = 2. In particular, they proved that for
n ≥ 1,

n∑
k=1

k

[
n

k

]
=
[
n+ 1

2

]
,

providing a bijection between Tn and sets of the permutations into various
numbers of cycles [2].
Pan studied Pascal-type arrays that generalize Stirling numbers of the first
kind and Jacobi-Stirling numbers. The author presented a convolution iden-
tity for these sequences [10]. It is well known that Stirling numbers with
a small value of the lower index k can be expressed by means of harmonic
and hyperharmonic numbers. In particular,[

n

2

]
= (−1)n(n− 1)!Hn−1

where Hn := 1+1/2+· · ·+1/n. Kowalenko followed this topic and presented
the first 10 expressions of the Stirling numbers of the first kind in terms of
the generalized harmonic numbers [9]. Recall that hyperharmonic numbers
appear in the book by Conway and Guy [6].
There are several known generalizations of Stirling numbers. Carlitz in-
troduced the weighted Stirling numbers [5]. The r-Stirling numbers are a

3
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special case of generalized Stirling numbers studied by Hsu and Shine [8].
Broder gave the generating functions for the r-Stirling numbers [4],

n∑
k=r

[
n

k

]
r

xk = xr
n−1∏
j=r

(x+ j),

∞∑
n=k

[
n+ r

k + r

]
r

xn

n!
= 1

k!

( 1
1 − x

)r[
ln
( 1

1 − x

)]k
,

n∑
k=0

[
n+ r

k + r

]
r

xn

n!
tk =

( 1
1 − x

)r+1
.

Benjamin, D. Geabler, and R. Geabler have shown that harmonic num-
bers can be expressed in terms of r-Stirling numbers, which leads to many
identities [1].
In what follows, we present an explicit formula for r-Stirling numbers in
Proposition 2.1. We prove it employing combinatorial arguments. Our
main result is presented in Section 3. Using mathematical induction, we
give alternating sum identities in full generality.

2 Explicit formulae for small parameters
It is well known that there is a double-sum explicit formula for the Stirling
numbers of the first kind,[

n

k

]
=

2n−k∑
j=n

(
j − 1
k − 1

)(
2n− k

j

) j−n∑
l=0

(−1)l+n−klj−k

l!(j − n− l)!

(there is no known single-sum formula, as there is for Stirling numbers of the
second kind). The best-known simpler explicit formulas are those having
the value of the lower index either small or close to the value of the upper
index.
The following identities can be derived directly by enumerating permuta-
tions.

4
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[
n

n− 1

]
=

(
n

2

)
,[

n

n− 2

]
= 3n− 1

4

(
n

3

)
,[

n

n− 3

]
=

(
n

2

)(
n

4

)
,[

n

n− 4

]
= 15n3 − 30n2 + 5n+ 2

48

(
n

5

)
.

One can also apply the Newton-Girard formula for symmetric polynomials
to get expressions for Stirling numbers with small values of the lower index.
For n ∈ N we have [

n

2

]
= (n− 1)!Hn−1. (2.1)

Furthermore, it holds true[
n

3

]
= (n− 1)!

2

(
(Hn−1)2 −H

(2)
n−1

)
,[

n

4

]
= (n− 1)!

6

(
(Hn−1)3 − 3Hn−1H

(2)
n−1 + 2H(3)

n−1

)
,

where H(m)
n :=

∑n
k=1 1/km. The recurrence for these expressions,

(m+ 1)
[

n

m+ 2

]
=

m∑
k=0

[
n

m− k + 1

]
H

(k+1)
n−1 ,

is given by Shen [12].
There is a nice proof for the relation (2.1) by a counting argument. We
consider the set of permutations of length n+1 with two cycles and address
the question of what number of permutations that have r as the smallest
element in the right cycle is, where 2 ≤ r ≤ n+ 1. Thus, we have

(1 · · · · · · )(r · · · · · · )

as the structure of the permutations. Having known that r is the smallest
element in the right cycle, we conclude that the left cycle contains numbers
1, 2, . . . , r − 1. Therefore, there are

(r − 2)!

5
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possibilities to arrange these numbers. Now, the element r+1 can be either
in the left or the right cycle. There are r possibilities to place it, since
r + 1 can be placed to the right side of any of the elements 1 through r.
Furthermore, we have r + 1 possibilities to arrange the element r + 2. In
the same manner, one concludes that there are

r(r + 1)(r + 2) · · ·n = n!
(r − 1)!

ways to arrange numbers r + 1, . . . , n.
Finally, by the product rule, there are

(r − 2)! n!
(r − 1)!

= n!
r − 1

considered permutations. Summation on r completes the proof,[
n+ 1

2

]
=

n+1∑
r=2

n!
r − 1

= n!
n+1∑
r=2

1
r − 1

= n!
n∑

k=1

1
k

= n!Hn.

Proposition 2.1. For positive integers n, we have the following explicit
formula for the r-Stirling numbers:[

n

n− 1

]
r

= (n− r)(n− 1 + r)
2

.

Proof. We consider the set of permutations of the set {1, . . . , r, . . . , n} with
n− 1 cycles such that the elements 1, . . . , r are in distinct cycles, that is

(1 · · · ) · · · (r · · · )( · · · ) · · · ( · · · )︸ ︷︷ ︸
n−1

.

Out of n−1 cycles, r are reserved for the elements 1, 2, . . . , r, each in its own
cycle. Thus, there are n− 1 − r remaining cycles. To form these remaining
cycles, we choose n − 1 − r elements from the remaining n − r elements,
which can be done in n− r ways, leaving one element unplaced. We denote
this remaining element by a.

6
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Now, a can be inserted into one of the existing cycles, either into one of he
r cycles with element 1, . . . , r − 1 or r, or into one of the remaining ones.
In the first case, there are r possibilities.
In the other case, a can be placed into the remaining n− 1 − r cycles. Let
x denote the element currently in the cycle into which a is placed. Since
inserting a into the cycle of x is equivalent to inserting x into the cycle of a,
such configuration is counted twice. Therefore, this contributes n−1−r

2 valid
placements.
Therefore, the total number of such permutations is equal to

(n− r)
(
r + n− 1 − r

2

)
= (n− r)(n− 1 + r)

2
.

3 The alternating sum
The number of permutations of n elements with an even number of cycles
is equal to the number of those with an odd number of cycles. Namely, in
the standard notation, the element 2 is either in the first cycle or it is the
first element in the second cycle. This provides the involution

(1 a1 · · · aj 2 b1 · · · bk)( · · · ) · · · ( · · · )

↑↓

(1 a1 · · · aj)(2 b1 · · · bk)( · · · ) · · · ( · · · )

which changes the parity of a permutation [3]. This reasoning proves that
the alternating sum of Stirling numbers with the upper index n is equal to
zero,

n∑
k=1

(−1)k

[
n

k

]
= 0.

We now present an alternating sum identity involving r-Stirling numbers of
the first kind and provide a proof using strong induction.

Theorem 3.1. For positive integers n and r ≥ 2, r-Stirling numbers of the
first kind satisfy

n∑
k=r

(−1)k

[
n

k

]
r

= (−1)r (n− 2)!
(r − 2)!

. (3.1)

7
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Proof. The relation (3.1) holds true for n = r, since the right hand side of
the equation gives (−1)r which is equal to

(−1)r

[
r

r

]
r

.

Moreover, for n = r + 1, the left-hand side of the equation gives

(−1)r

[
r + 1
r

]
r

+ (−1)r+1
[
r + 1
r + 1

]
r

= (−1)r(r − 1)

by relation (1.1), while the right-hand side of the equation gives

(−1)r (r + 1 − 2)!
(r − 2)!

= (−1)r(r − 1).

Furthermore, by applying the recurrence relation (1.2), we have

n∑
k=r

(−1)k

[
n

k

]
r

= (−1)r

[
n

r

]
r

+ (−1)r+1
[

n

r + 1

]
r

+ · · · + (−1)n−1
[

n

n− 1

]
r

+ (−1)n

[
n

n

]
r

= (−1)r(n− 1)
[
n− 1
r

]
r

+ (−1)r+1
([
n− 1
r

]
r

+ (n− 1)
[
n− 1
r + 1

]
r

)
+ · · ·

+ (−1)n−1
([
n− 1
n− 2

]
r

+ (n− 1)
[
n− 1
n− 1

]
r

)
+ (−1)n

[
n− 1
n− 1

]
r

= (n− 2)
n−1∑
k=r

(−1)k

[
n− 1
k

]
r

= (n− 2)(−1)r (n− 1 − 2)!
(r − 2)!

= (−1)r (n− 2)!
(r − 2)!

.

For r = 2, identity (3.1) simplifies to an elegant form

n∑
k=2

(−1)k

[
n

k

]
2

= (n− 2)!.

Identity (3.1) simplifies to an (almost equally) elegant form for r = 3.

8
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Example 3.2. For r = 4 and n = 7, according to Theorem 3.1 we have
following alternating summation

7∑
k=4

(−1)k

[
7
k

]
4

= 120 − 74 + 15 − 1

= 60
(

= (−1)4 (7 − 2)!
(4 − 2)!

)
.

4 Concluding remarks
The r-Stirling numbers of the first kind are a natural generalization of the
Stirling numbers of the first kind, having a similar combinatorial interpre-
tation. The r-Stirling numbers of the first kind are characterised by the
requirement that elements 1 through r are in different cycles of a permuta-
tion.
Stirling numbers of the first kind, which have the value of the lower index
either small or close to the value of the upper index, have known explicit
formulas. In this paper, we aimed to find an explicit expression for the r-
Stirling numbers as well. It remains to derive other explicit expressions for
these numbers. In particular, it would be interesting to answer the question
on the recursive nature of such formulas.
Being motivated by the involution which gives the alternating sum of Stir-
ling numbers of the first kind, we consider the analogous problem for the
r-Stirling numbers. We presented a family of identities with alternating
sign for the rows of triangular matrices of r-Stirling numbers of the first
kind. It would be valuable to find a combinatorial proof of these identities.
Furthermore, one could find other summations involving these numbers or
extend the problem to other generalizations as well as to r-Stirling numbers
of the second kind.
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Divisions of narrow strips in square and hexagonal
lattices

Tomislav Došlić and Luka Podrug

Abstract
In a recent paper, it was determined that the total number of di-
visions of a narrow hexagonal strip is counted by odd-indexed Fi-
bonacci numbers. In this paper, we consider two division problems
on narrow strips of square and hexagonal lattices. In both cases, we
compute the bivariate enumerating sequences and the corresponding
generating functions, which allowed us to determine the asymptotic
behavior of the total number of such subdivisions and the expected
number of parts. For the square case, we extend the results of two
recent references by establishing the polynomiality of enumerating se-
quences forming columns and diagonals of the triangular enumerating
sequence. In the hexagonal case, we provide an alternative proof for
the number of divisions. We also show how both cases could be treated
via the transfer matrix method and discuss some directions for future
research.

1 Introduction
It has been a long-standing problem of great practical importance to count
the ways of dividing a collection of entities into smaller sets according to
a given set of rules. If the entities are considered to be indivisible, and
we only care about their number, the natural framework for modeling such
situations is the theory of integer partitions and compositions, depending on
further properties of the considered entities. If, on the other hand, we are
interested in relationships between the entities, such as e.g., their adjacency

(Tomislav Došlić) University of Zagreb Faculty of Civil Engineering, tomis-
lav.doslic@grad.unizg.hr

(Luka Podrug) University of Zagreb Faculty of Civil Engineering,
luka.podrug@grad.unizg.hr
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patterns or their relative positions, we must resort to more complex models
such as graphs and geometric figures.
In this paper, we look at finite portions of the square and hexagonal regu-
lar lattices and count ways of dividing narrow strips in such lattices into a
given number of pieces while preserving the integrity of individual squares or
hexagons. The considered portions of square and hexagonal lattices remind
us of chocolate bars and honeycomb slabs, respectively, hence the title. We
start by revisiting some partial results for narrow strips in the square lattice
available in the literature and present a complete solution to the problem.
In particular, we derive the recurrences satisfied by the sequences enumer-
ating the divisions of a 2 × n strip into k pieces. From them, we compute
the bivariate generating function whose univariate specialization yields the
recurrence for the overall number of divisions. In that way, we recover the
results of Knopfmacher obtained in the context of compositions of ladder
graphs [5]. We refine those results by investigating the behavior of columns
in the enumerating triangle. We establish convolution-type recurrences for
all columns, going thus beyond partial results of references [2, 4, 7]. Then
we apply the same approach to narrow strips of hexagons, again deriving
the recurrences and computing the bivariate generating function. Then we
show how the results for honeycomb strips can be obtained by using trans-
fer matrices. Finally, we also derive transfer matrices for the chocolate bars
from which we started.
The paper is concluded with some remarks on the strong and weak points of
employed methods and with some indications of possible further directions.

2 Definitions and preliminary results
Let n be a non-negative integer. We consider a 2 × n rectangular strip
consisting of 2n squares arranged in 2 rows and n columns, such as the one
shown in Fig. 1. In the rest of the paper, we will often refer to such strips as
chocolate bars of length n. We consider divisions of such structures into a
given number of pieces obtained by cutting along the edges of basic squares.
More precisely, we would like to find the number of all possible divisions of
such a bar of a given length, and also the number of such divisions into a
given number of parts k. Clearly, 1 ≤ k ≤ 2n are the only meaningful values
of k. Let rk(n) denote the number of divisions of 2 × n rectangular strip
into exactly k pieces and r(n) the total number of divisions. From definition
we have that rk(n) = 0 for k < 1 and for k > 2n. The initial values are
r1(1) = r2(1) = 1, and r1(2) = 1, r2(2) = 6, r3(2) = 4 and r1(4) = 1.
In a recent paper, Brown [2] studied such divisions and obtained a system of
recursive relations that we include below as Theorem 2.1. In order to state
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· · ·

1

2

3

4 2n

2n − 1

Figure 1: Rectangular strip containing 2n squares.

Brown’s results, we need one auxiliary term, more specifically, the number
of divisions of a 2×n rectangular strip into k parts such that the squares in
the last column belong to different parts. We denote that number by qk(n)
and show one such division in Figure 2 as an example.

Figure 2: One division of 2 × 6 rectangular strip into 5 parts with squares
in the last column being in the different parts. The total number of such
divisions is denoted by q5(6).

Theorem 2.1 (Brown). The number of divisions of 2 ×n strip into k parts
satisfies following system of equations:

rk(n+ 1) = rk(n) + 3rk−1(n) + rk−2(n) + 2qk(n)
qk(n+ 1) = 2rk−1(n) + rk−2(n) + qk(n).

It is an easy exercise to eliminate qk(n) from the system of equations in
Theorem 2.1 and to obtain recursive relations for rk(n),

rk(n+1) = rk−2(n)+3rk−1(n)+2rk(n)+rk−2(n−1)+rk−1(n−1)−rk(n−1),
(2.1)

and for the overall number of such divisions,

r(n+ 1) = 6r(n) + r(n− 1). (2.2)

These recurrences will serve as the starting point of our Section 3, where
Brown’s results will be extended and refined by establishing recurrences in
n for a fixed k and by computing the expected values of k in a random
division of a 2 × n chocolate bar.
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Next, we consider a hexagonal strip composed of n regular hexagons as
shown in Figure 3. Throughout the paper, such hexagonal strips will also be
referred to as honeycomb strips. The number to divide hexagonal strips with
n hexagons into exactly k parts is given by

(n+k−2
n−k

)
while the overall number

of divisions is F2n−1, where Fn stands for the nth Fibonacci number [3].
Here we present recurrences, generating functions, and again, only divisions
along the edges of hexagons are considered. The hexagons are added in the
order as it is shown in Figure 3.

2

1
4

3 5

6 8 10

7 11 9

12

Figure 3: Honeycomb strip with 12 hexagons divided into 5 pieces.

Let Dk(n) denote the set of all possible divisions of the honeycomb strip
with n hexagons into k pieces and dk(n) = |Dk(n)| the number of elements
of the set Dk(n). Now we can state some simple cases: d1(n) = 1, for every
non-negative integer n, since there is only one way to obtain one part, and
dn(n) = 1, since there is only one way to obtain n parts, that is to let
each hexagon form its own part. Furthermore, dk(n) = 0 for k < 1 and for
k > n. It is convenient to set d1(0) = 1. As an example, we list all possible
divisions of the strip containing 4 hexagons as the first non-trivial case.

d1(4) = 1 {1234}
d2(4) = 6 {1, 234} , {2, 134} , {3, 124} , {4, 123} , {12, 34} , {13, 24}
d3(4) = 5 {12, 3, 4} , {13, 2, 4} , {23, 1, 4} , {24, 1, 3} , {34, 1, 2}
d4(4) = 1 {1, 2, 3, 4}

Note that the division {14, 23} is not included, since hexagons 1 and 4 are
not adjacent, as shown in Figure 4, thus cannot form a part.
Since the inner dual of a 2 × n rectangular strip is a subgraph of the inner
dual of a hexagonal strip of length 2n, all divisions of a 2 × n rectangular
strip are also valid divisions of a hexagonal strip with 2n hexagons, but
not vice versa. Figure 5 shows the division {1, 23, 4} which is legal in the
hexagonal strip but illegal in the rectangular strip.
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1

2

3

4

1

2

3

4 2 4

1 3 3

2 4

1

42

1 3

1

2

3

4 2 4

1 3

4

31

2 2 4

1 3 1

42

3 1 3

2 4

2

1 3

4

1

2

3

4

Figure 4: Divisions of the strip with 4 hexagons.

3 Dividing a chocolate bar into a given number of
parts

Numbers rk(n) of (2.1) form a triangular array; its first few lines are shown
in Table 3. In this section, we investigate the behavior of its columns, i.e.,
we turn our attention to recursive relation for rk(n) where k is fixed.
As mentioned before, r0(n) = 0 and r1(n) = 1, so we look at the first
non-trivial case, k = 2. From relation (2.1) we obtain r2(n) = r0(n − 1) +
3r1(n− 1) + 2r2(n− 1) + r0(n− 2) + r1(n− 2) − r2(n− 2). By plugging in
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1

42

3 1

42

3

Figure 5: A valid division of a honeycomb strip on the left, and the corre-
sponding division of a rectangular grid that is not allowed on the right side.

n\k 1 2 3 4 5 6 7 8 9 10

1 1 1
2 1 6 4 1
3 1 15 29 21 7 1
4 1 28 107 153 111 45 10 1
5 1 45 286 678 831 603 274 78 13 1

Table 3: First few rows of rk(n).

r0(n− 1) = r0(n− 2) = 0 and r1(n− 1) = r1(n− 2) = 0, we obtain

r2(n) =2r2(n− 1) − r2(n− 2) + 4
r2(n− 1) =2r2(n− 2) − r2(n− 3) + 4,

and by subtracting these two equations, we arrive at

r2(n) = 3r2(n− 1) − 3r2(n− 2) + r2(n− 3). (3.1)

Rewriting the trivial case

r1(n) = r1(n− 1) (3.2)

as (
1
0

)
r1(n) =

(
1
1

)
r2(n− 1), (3.3)

and case k = 2 as(
3
0

)
r2(n) =

(
3
1

)
r2(n) −

(
3
2

)
r2(n− 1) +

(
3
3

)
r2(n− 2) (3.4)

suggests that there is a pattern valid also for higher values of k. The con-
jectured pattern is readily verified by induction, thus yielding the following
theorem.
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Theorem 3.1. For integers n, k ≥ 1 we have
2k−1∑
j=0

(−1)j

(
2k − 1
j

)
rk(n− j) = 0. (3.5)

Proof. The proof is by induction. For k = 1, 2, the base of induction is true,
as stated above. To verify the step of induction, we use recursion (2.1) to
obtain a system of 2k − 2 equations as follows:

rk(n) = rk−2(n− 1) + 3rk−1(n− 1) + 2rk(n− 1)+
+ rk−2(n− 2) + rk−1(n− 2) − rk(n− 2)

rk(n− 1) = rk−2(n− 2) + 3rk−1(n− 2) + 2rk(n− 2)+
+ rk−2(n− 3) + rk−1(n− 3) − rk(n− 3)

rk(n− 2) = rk−2(n− 3) + 3rk−1(n− 3) + 2rk(n− 3)+
+ rk−2(n− 4) + rk−1(n− 4) − rk(n− 4)

...
rk(n− 2k + 3) = rk−2(n− 2k + 2) + 3rk−1(n− 2k + 2) + 2rk(n− 2k + 2)+

+ rk−2(n− 2k + 1) + rk−1(n− 2k + 1) − rk(n− 2k + 1)

The term rk(n−j) appears in at most three equations, namely in the (j−1)st,
jth and (j + 1)st equation. To proceed forward, we multiply j-th equation
by (−1)j

(2k−3
j−1

)
and we add up all equations. For even j, the term rk(n− j)

appears with the coefficient(
2k − 3
j − 2

)
+ 2

(
2k − 3
j − 1

)
+
(

2k − 3
j

)
=
(

2k − 1
j

)
,

and for odd j with the same coefficient, but with the opposite sign. We
conclude that

rk(n) =
2k−1∑
j=1

(−1)j

(
2k − 1
j

)
rk(n− j) +Ak−1(n) +Ak−2(n), (3.6)

where Ak−1(n) and Ak−2(n) are some expressions involving rk−1(n− j) and
rk−2(n − j), respectively. The claim of the theorem will be established if
we show that both Ak−1(n) and Ak−2(n) are equal to zero. We first look
at Ak−1(n). For j ≥ 1, the term rk−1(n − j) appears twice in our system
of equations, in the (j − 1)st and in the jth equation, hence, the coefficient
by rk−1(n− j) is

(2k−3
j−2

)
− 3

(2k−3
j−1

)
for an odd j, and 3

(2k−3
j−1

)
−
(2k−3

j−2
)

for an
even j. So,

Ak−1(n) =
2k−1∑
j=1

(−1)j

(
3
(

2k − 3
j − 1

)
−
(

2k − 3
j − 2

))
rk−1(n− j).
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For k − 1 we can use the induction hypothesis, hence

3
2k−3∑
j=0

(−1)j

(
2k − 3
j

)
rk−1(n− j − 1) = 0

and
2k−3∑
j=0

(−1)j

(
2k − 3
j

)
rk−1(n− j − 2) = 0.

After adding the equations, we have

0 = 3
2k−3∑
j=0

(−1)j

(
2k − 3
j

)
rk(n− j − 1) +

2k−3∑
j=0

(−1)j

(
2k − 3
j

)
rk(n− j − 2)

= 3
2k−2∑
j=1

(−1)j−1
(

2k − 3
j − 1

)
rk(n− j) +

2k−1∑
j=2

(−1)j

(
2k − 3
j − 2

)
rk(n− j)

=
2k−1∑
j=1

(−1)j

((
2k − 3
j − 2

)
− 3

(
2k − 3
j − 1

))
rk(n− j),

hence, Ak−1(n) = 0.
Similarly, Ak−2(n) can be expressed as

Ak−2(n) =
2k−1∑
j=1

(−1)j

((
2k − 3
j − 1

)
−
(

2k − 3
j − 2

))
rk−2(n− j),

and, again, by using the induction hypothesis for k−2, we obtain Ak−2(n) =
0. The proof follows along the same lines as for Ak−1(n) = 0, and we omit
the details.
This completes our proof.

Theorem 3.1 implies that all columns of the array rk(n) are polynomials
in n. Moreover, rk(n) is a polynomial in n of degree 2k − 2. The exact
expressions can be easily obtained by fitting to the initial values, but we
omit the details. Our Theorem 3.1 reestablishes the polynomiality results
of references [2] and [4] in a more compact and self-contained form.
A similar reasoning could also be employed near the upper end of the range
of k and used to establish polynomiality of diagonals r2n−k(n), going thus
beyond the results of references [2, 4]. Indeed, r2n(n) = 1 for all non-
negative integers n. Furthermore, r2n−1(n) = 3n − 2, since among the
2n − 1 pieces there must be exactly one dimer. That dimer is an edge in
the inner dual of our bar, hence an edge in a ladder graph with n rungs,
and there are exactly 3n− 2 such edges. In a similar way, one can see that
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r2n−2(n) must be a quadratic polynomial in n: A division into 2n− 2 parts
can either contain one trimer and 2n − 3 monomers, or two dimers and
2n− 4 monomers. As the number of trimers is linear in n and the number
of pairs of dimers is quadratic in 3n, by fitting on the first few values for
small n one obtains r2n−2(n) = 9

2(n − 1)(n − 2
3). By continuing with the

same reasoning, one obtains a general result.

Theorem 3.2. r2n−k(n) is a polynomial of degree k in n with the leading
coefficient 3k

k! .

We leave the details to the interested reader.
We now move towards computing the bivariate generating function for rk(n).
Let

F (x, y) =
∑
n≥1

∑
k≥1

rk(n)xnyk

denote the desired generating function. By starting from recurrence (2.1)
we readily obtain

F (x, y) = xy(1 − x+ y + xy)
1 − (2 + 3y + y2)x− (y2 + y − 1)x2 .

By substituting y = 1 we obtain

F (x, 1) = 2x
1 − 6x− x2 ,

the univariate generating function for the sequence rn.
Now we can determine the expected number of pieces in a random division.
We rely on the following version of Darboux’s theorem [1].

Theorem 3.3 (Darboux). If the generating function f(x) =
∑

n≥0 a
n
x of

a sequence (an) can we written in the form f(x) =
(
1 − x

ω

)α
h(x), where

ω is the smallest modulus singularity of f and h is analytic in ω, then
an ∼ h(ω)n−α−1

Γ(−α)ωn , where Γ denotes the gamma function.

Since ω =
√

10 − 3 we can write

F (x, 1) = 2x
x
(√

10 − 3
)

+ 1

1 − x(√
10 − 3

)
−1

.

Hence, we have h(x) = 2x
x
(√

10 − 3
)

+ 1
and h(ω) =

√
10

10 . Furthermore,

∂F (x, y)
∂y

∣∣∣∣
y=1

= −x(x3 + 3x2 + 7x− 3)(
x
(√

10 − 3
)
x+ 1

)2

1 − x(√
10 − 3

)
−2
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yields g(x) = −x(x3+3x2+7x−3)
(x(√

10−3)x+1)2 and g(ω) = 3
√

10−4
20 . By Theorem 3.3, the

expected number of parts is

g(ω)n
Γ(2)ωn

h(ω)
Γ(1)ωn

=
(

3
2

−
√

2
5

)
n.

Hence, we have established the following result for the expected number of
parts in a random division of a chocolate bar of length n.

Theorem 3.4. The expected number of parts in a random division of a
chocolate bar of length n is given by(

3
2

−
√

2
5

)
n ≈ 0.867544n.

The above result is derived under the so-called equilibrium assumption,
where all divisions are equally likely.
The triangle of Table 3 is not (yet) in the OEIS [6]. However, its row sums
appear as A078469, the number of compositions of ladder graphs in the sense
of reference [5]. Hence, our results could also be interpreted as a refinement
of the number of compositions of ladder graphs. Sequence r3(n) appears
as A345897, with the same interpretation as we give here. Curiously, such
an interpretation seems to be missing among many combinatorial interpre-
tations of A000384, the hexagonal numbers, which appear as the second
column of our triangle. Similarly, r2n−2(n) appears as A081266, but with-
out the interpretation given here.

4 Divisions of honeycomb strips

4.1 Recurrences, explicit formulas and generating functions
Recall that Dk(n) denotes the set of all possible divisions of the honeycomb
strip with n hexagons into k pieces, and dk(n) = |Dk(n)| is the number of
elements of the set Dk(n). In order to count the divisions correctly, special
attention must be paid to the rightmost two cells, since the new (n + 1)st

cell can interact only with them. Whether these hexagons are in the same
pieces or not plays a crucial role in how the new hexagon can be added. We
denote by Sk(n) the set of all possible divisions of the honeycomb strip with
n hexagons into k pieces, with the last two hexagons in the different parts.
Similarly, let Tk(n) denote the set of all possible divisions of the strip into
k pieces with the two rightmost hexagons belonging to the same piece. Let
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sk(n) = |Sk(n)| and tk(n) = |Tk(n)|. Since the last two hexagons can either
be together or separated, we have divided the set Dk(n) into two disjoint
sets, Dk(n) = Sk(n) ∪ Tk(n), hence dk(n) = tk(n) + sk(n).

Figure 6: A honeycomb strip with two rightmost hexagons in the same
piece.

Figure 7: A honeycomb strip with two rightmost hexagons in different
pieces.

We first establish an auxiliary result.

Theorem 4.1. For n ≥ 1, the number of all possible divisions sk(n) of the
honeycomb strip with n hexagons into k pieces, with hexagons in the last
column being in the different pieces, satisfies the following relation:

sk(n+ 1) = sk−1(n) + 2sk(n) − sk(n− 1). (4.1)

Proof. We start with a strip containing n hexagons and add one new
hexagon to obtain a strip with n + 1 hexagons. The new hexagon can
either increase the number of parts in the division by 1 or not increase this
number. To obtain a division with k pieces, we can only start with the
division with k − 1 or k pieces. These are two disjoint sets, so the number
of all divisions will be the sum of these cases.
When starting with division consisting of k−1 pieces, we can obtain k pieces
by adding the new hexagons as individual pieces. Since there is only one
way to do that, the number of divisions that can be obtained this way is
dk−1(n). Note that the condition that the rightmost two hexagons belong
to different pieces is satisfied, as shown in Figure 8.
It remains to consider one last case. We start with a strip divided into
k pieces and we add (n + 1)st hexagon. If the last two hexagons in the
division are together, we cannot add new hexagons so that the number of
parts remains the same, and the new hexagons are in different pieces.
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n+ 1

n

Figure 8: The element of Sk(n + 1) obtained from the element of Dk−1(n)
by adding the new hexagon as separated piece.

Now we move to the case where the last two hexagons in the division are
separated. There is only one way to add new hexagons to the existing strip,
to put the (n + 1)st hexagon together with (n − 1)st (see Figure 9). Every
other layout would be in contradiction with either the number of pieces
or the fact that the last two hexagons should be separated, since putting
(n+ 1)st hexagon together with nth hexagon would produce the element of
Tk(n). So in this case, we have sk(n) ways to obtain the desired division.

n− 1 n+ 1

n

Figure 9: The element of Sk(n+ 1) obtained from the element of Sk(n) by
joining the new hexagon with (n− 1)st hexagon

By summing these two cases, we obtain the recursive relation

sk(n+ 1) = dk−1(n) + sk(n). (4.2)

To eliminate dk−1(n) from relation (4.2), we use the fact that dk−1(n) =
tk−1(n)+sk−1(n). By removing the last hexagon from the strip, we establish
a 1-to-1 correspondence between all divisions of a strip with n− 1 hexagons
and divisions of a strip with n hexagons where the last two hexagons are in
the same part. Hence, tk(n) = dk(n− 1). Then we have

sk(n+ 1) = sk−1(n) + tk−1(n) + sk(n)
= sk−1(n) + dk−1(n− 1) + sk(n),

hence dk−1(n − 1) = sk(n + 1) − sk−1(n) − sk(n), which combined with
relation (4.2) yields

sk(n+ 1) = sk−1(n) + 2sk(n) − sk(n− 1)

and we proved the theorem.
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By disregarding values of k in recursive relation 4.1 we obtain

s(n+ 1) = 3s(n) − s(n− 1),

where s(n) represents the number of all divisions of a honeycomb strip of
length n with the last two hexagons in different parts. Since we obtained the
same recursive relation as for bisection of Fibonacci sequence with s(1) = 0
and s(2) = 1, we have

s(n) = F2n−2.

Our main result of this section now follows by much the same reasoning as
dk(n) satisfies the same recurrence as sk(n). We state it without proof.

Theorem 4.2. For n ≥ 1, the number of all possible divisions dk(n) of n
honeycomb strip into k pieces satisfies the following relation:

dk(n+ 1) = dk−1(n) + 2dk(n) − dk(n− 1). (4.3)

Again, by grouping terms of recurrence 4.3 with respect to n, we obtain
the recurrence satisfied by the sequence d(n) counting the total number of
subdivisions of a honeycomb strip of length n as

d(n+ 1) = 3d(n) − d(n− 1).

Taking into account the initial conditions d(1) = 1 and d(2) = 2 yields a
very simple answer.

Theorem 4.3. The total number of divisions of a honeycomb strip of length
n is given by d(n) = F2n−1, where Fn denotes the nth Fibonacci number.

The above theorem yields a nice combinatorial interpretation of the odd-
indexed Fibonacci numbers.
With the above result at hand, it is not too difficult to guess the explicit
formulas for dk(n) and sk(n). The following theorem is easily proved by
simply verifying that the proposed expressions satisfy the respective recur-
rences and initial conditions.

Theorem 4.4. The number of all divisions dk(n) of the honeycomb strip
with n hexagons into exactly k pieces is

dk(n) =
(
n+ k − 2
n− k

)
.

The number sk(n) of all divisions of the honeycomb strip with n hexagons
into k pieces such that the two rightmost hexagons belong to different pieces
is equal to zero if n = 1 and for n ≥ 2 it is given as

sk(n) =
(
n+ k − 3
n− k

)
.
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Even though sequences rk(n) and dk(n) satisfy different recursive relations
and describe different problems, it turns out that their columns satisfy the
same recurrences. Our next theorem is analogous to Theorem 3.1, but for
the sequence dk(n). We state it without proof.

Theorem 4.5. For n, k ≥ 1 we have

2k−1∑
j=0

(−1)j

(
2k − 1
j

)
dk(n− j) = 0. (4.4)

As with a rectangular strip, we are now interested in the generating function
of the sequence dk(n). Let

G(x, y) =
∑
n≥1

∑
k≥1

dk(n)xnyk.

By recursive relation 4.3 we have

G(x, y) = xy + x2y (1 + y) +

+
∑
n≥3

∑
k≥1

(dk−1(n− 1) + 2dk(n− 1) − dk(n− 2))xnyk

= xy + x2y (1 + y) + xy (G(x, y) − xy) +
+ 2x (G(x, y) − xy) − x2G(x, y),

so we have
G(x, y) = xy(1 + x(y − 1) − xy)

1 − (2 + y)x+ x2 .

By putting y = 1, we obtain the univariate generating function for the
sequence d(n) as

G(x, 1) = x− x2

1 − 3x+ x2 .

Its smallest-modulus singularity is ω = 1
2

(
3 −

√
5
)

and this gives us the
asymptotics of the expected number of pieces in a random divisions of hon-
eycomb strips of a given length.

Theorem 4.6. The expected number of pieces in a random division of a
honeycomb strip of length n asymptotically behaves as

√
5

5
n ≈ 0.447214n.

The proof follows by a straightforward application of the Darboux theorem,
and we omit the details.
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4.2 Some consequences
Our results make it possible to give a new combinatorial interpretation for
some famous identities. We present two such cases.
First, by double-counting the set D(n), we gave new meaning to the well-
known identity

n∑
k=1

(
n+ k − 2
n− k

)
= F2n−1.

Another identity will be proven in the next theorem.

Theorem 4.7. For n,m ≥ 1 we have

F2n+2m−1 = F2n−1F2m−1 + F2nF2m.

Proof. We start with two honeycomb strips of lengths n and m. To prove
the statement of a theorem, we glue strips together as in Figure 10 and
double-count the number of divisions. On one hand, we have a strip of
length n + m whose number of divisions is d(n + m). On the other hand,
we consider what can happen when strips are glued together. In the first
case, parts of each division do not interact, hence, we have d(n)d(m) such
divisions. In the other cases, at least two parts, one from each strip, must
merge. But to correctly count the number of divisions in those cases, it
is important to know whether the division is with the two last hexagons
together or separated. If both strips have the last two hexagons together,
the total number of such divisions is t(n)t(m). If both strips have the last
two hexagons separated, the total number of such divisions is 4s(n)s(m),
since there are four different ways to merge parts. Finally, if one strip has
two last hexagons separated and the other one together, we can merge the
parts in two ways. Since either one of the strips can be in both situations,
the total number of divisions in this case is 2s(n)t(m) + 2s(n)t(m).

2 n m − 1 1

1
· · ·

n − 1 m

· · ·
2

Figure 10: Two honeycomb strips glued together.

So,

d(n+m) = d(n)d(m) + 4s(n)s(m) + t(n)t(m) + 4s(n)t(m).

The claim now follows by substituting d(n) = F2n−1, s(n) = F2n−2 and
t(n) = F2n−3 and rearranging the resulting expressions.
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The results of this section can also be formulated in terms of graph com-
positions, this time of the graph P 2

n obtained by adding edges between all
pairs of vertices at distance 2 in Pn, the path on n vertices. The following
results are a direct consequence of the fact that P 2

n is the inner dual of a
honeycomb strip of length n.

Theorem 4.8. The number of compositions of P 2
n with k components is

equal to
(n+k−2

n−2
)
. The total number of compositions of P 2

n is equal to F2n−1.

5 Transfer matrix method

5.1 Honeycomb strips
In this section, we present another approach to obtain an overall number of
divisions, the one based on transfer matrices. It might seem less natural than
recurrence relations, but it often turns out to be suitable when recurrence
relations are complicated or unknown.
We again consider a honeycomb strip such as the one shown in the Figure 3,
and look at its rightmost column, i.e., at the hexagons labeled by n− 1 and
n. There are two possible situations regarding these hexagons: they can be
in the same piece of a subdivision, or they can belong to two different pieces.
We denote a strip with the last two hexagons together as a type T strip and
a strip with the last two hexagons separated as a type S strip. Adding the
(n + 1)−st hexagon might result again in a type S strip or a type T strip.
There are altogether four possibilities, each of which produces certain effects
on the number of pieces in the resulting strip. For example, if we start with
a strip of type S and we want to end with a strip of type S, we can either
add the new hexagon to the part which contains the (n − 1)st hexagon, or
we can let the (n+ 1)st hexagon to form its own part. In the first case, the
number of parts will remain the same; in the second case, it will increase
by one. Figure 11 shows this case. The main idea of the transfer matrix

n

n+ 1n− 1

n

n+ 1n− 1

Figure 11: Both cases resulting in a strip of type S.

method is to arrange the effects of adding a single hexagon into a 2 × 2
matrix whose entries will keep track of the number of pieces via a formal
variable, say, y. The rows and columns of such a matrix are indexed by
possible states, in our case T and S, and the element at the position S, S in
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our example will be 1 + y. That clearly captures the fact that transfer from
S to S results either in the same number of pieces, or the number of pieces
increases by one. The other three possible transitions, T → T , S → T and
T → S are described by matrix elements 1, 1, and y, respectively. Indeed,
it is clear that adding a hexagon to obtain the rightmost column together
cannot increase the number of pieces, hence the two ones, and that starting
from T and arriving at S is possible only by the last hexagon forming a new
piece, hence increasing the number of pieces by one, hence y. If we denote
our matrix by H, we can write it as

H(y) =
[
1 1
y 1 + y

]
.

By construction, it is clear that adding a new hexagon will be well described
by multiplying some vector of states by our matrix H(y), and that repeated
addition of hexagons will correspond to multiplication by powers of H(y).
It remains to account for the initial conditions.
For the initial value n = 1, we have a trivial case, one hexagon forms one
part. For n = 2 we have two possibilities, hexagons are in the same part or
separated. Hence, his case is represented by a vector

−→
h2 = x

[
y
y2

]
.

By introducing another formal variable, say x, to keep track of the length,
the above procedure will produce a sequence of bivariate polynomials whose
coefficients are our numbers dk(n). The first few polynomials are shown in
Table 4 after the theorem, which summarizes the described procedure.

Theorem 5.1. The number of divisions of a honeycomb strip of a length n
into k parts is the coefficient of xnyk in the expression

[
1 1

] [1 1
y 1 + y

]n−2 [
y
y2

]
xn. (5.1)

The coefficients by xnyk in expression (5.1) could now be determined by
studying the powers of the transfer matrix. By looking at the first few
cases,

H(y)2 =
[

1 + y 2 + y
2y + y2 1 + 3y + y2

]
and

H(y)3 =
[

1 + 3y + y2 3 + 4y + y2

3y + 4y2 + y3 1 + 6y + 5y2 + y3

]
,
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n

1 xy
2 x2(y + y2)
3 x3(y + 3y2 + y3)
4 x4(y + 6y2 + 5y3 + y4)
5 x5(y + 10y2 + 15y3 + 7y4 + y5)
6 x6(y + 15y2 + 35y3 + 28y4 + 9y5 + y6)

Table 4: First few bivariate polynomials from the transfer matrix method.

we could guess the entries in the general case and then verify them by
induction. We state the result, omitting the details of the proof.
Lemma 5.2. Matrix

H(y)n =
[
p(n) s(n)
ys(n) p(n+ 1)

]

with p(n) =
n∑

k=1

(
n+ k − 2
n− k

)
yk−1 and s(n) =

n∑
k=1

(
n+ k − 1
n− k

)
yk−1.

Lemma 5.2 allows us to simplify the expression (5.1) to have
[
1 1

] [1 1
y 1 + y

]n−2 [
y
y2

]
xn =

=
[
1 1

] [ p(n− 2) s(n− 2)
ys(n− 2) p(n− 1)

] [
y
y2

]
xn

=
(
yp(n− 2) + ys(n− 2) + y2s(n− 2) + y2p(n− 1)

)
xn

= (yp(n− 1) + y (s(n− 2) + yp(n− 1)))xn

= p(n)xny

=
n∑

k=1

(
n+ k − 2
n− k

)
ykxn

By Theorem 5.1 we have

d(n, k) =
(
n+ k − 2
n− k

)
.

Now we turn our attention to the number of all possible divisions, i.e. we
wish to determine the number d(n). To do that, we again use a matrix H(y)

and Theorem 5.1. By setting y = 1 we have H(1) =
[
1 1
1 2

]
=
[
F1 F2
F2 F3

]
.

Again, the following claim is easily guessed and verified by induction.
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Lemma 5.3. H(1)n =
[
F2n−1 F2n

F2n F2n+1

]
.

Finally, by Lemma 5.3 we can simplify expression (5.1) to have

[
1 1

] [F2n−5 F2n−4
F2n−4 F2n−3

] [
1
1

]
=
[
F2n−5 + F2n−4 F2n−4 + F2n−3

] [1
1

]

=
[
F2n−3 F2n−2

] [1
1

]
= F2n−1.

By Theorem 5.1 we have d(n) = F2n−1.

5.2 Chocolate bars
Transfer matrices can also be used to obtain the sequence rk(n) denoting
the number of ways to divide a rectangular strip 2 × n into k parts. In
this case, we do not add square by square, but column by column. So, let
T denote a division of a strip where squares in the last column are in the
same part, and S a division where squares in the last column are in different
parts.
For n = 1, we have the same case as n = 2 in a honeycomb strip, so this
case is represented by a vector

−→q1 = x

[
y
y2

]
.

Similar to the honeycomb case, if we start with a division of type T and we
wish to obtain another division of type T , we can do that either by append-
ing two new squares to the same part as the squares of the last column,
or we can let two new squares form a new part. Hence, the corresponding
entry in the transfer matrix is 1 + y. By doing a similar analysis for other
cases, we obtain the transfer matrix

Q(y) =
[

1 + y 2 + y
y(2 + y) (1 + y)2

]
.

Again, y is a formal variable keeping track of the number of pieces. So, for
a strip 2 × n, the coefficient by xnyk in the expression

[
1 1

] [ 1 + y 2 + y
y(2 + y) (1 + y)2

]n−1 [
y
y2

]
xn
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represents the number of ways to divide a rectangular strip 2×n into exactly
k parts.
We conclude this section by mentioning that in both cases, we could have
obtained the asymptotic behavior of numbers d(n) and r(n) by computing
the leading eigenvalue of the corresponding transfer matrix.

6 Concluding remarks
In this paper, we have employed two different methods to count divisions
of narrow strips of squares and hexagons, respectively, into a given number
of pieces, when cutting is allowed only along the edges of basic polygons.
We have obtained several triangular integer arrays and determined formu-
las for their entries. Despite similar settings, the two problems behave in
different ways: for honeycomb strips, the entries of the enumerating trian-
gles are given as binomial coefficients with parameters dependent on the
strip length and the number of pieces, while for chocolate bars, no closed-
form expression has been obtained. We were able to show, though, that
the entries in columns satisfy convolution-type recurrences with coefficients
forming alternating rows of Pascal triangle.
Both problems were then addressed by using the transfer-matrix formalism.
The original results for the total number of divisions were re-derived in a
more compact way, demonstrating thus the power of the transfer-matrix
method. However, we found the approach unsuitable for refining the ag-
gregate results, for establishing the polynomial nature of columns, and for
obtaining closed-form solutions in the rectangular case. Nevertheless, we be-
lieve that the transfer matrices would prove useful in treating several similar
problems, as indicated by our experiments with wider strips in both square
and hexagonal lattices and with narrow strips in the triangular lattice.
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Surprising bijections of the Riviera model

Tomislav Došlić, Mate Puljiz, Stjepan Šebek and Josip Žubrinić

Abstract
In this short note we give bijective proofs of two results from [3] which
establish a correspondence between the maximal configurations in the
Riviera model and two seemingly unrelated combinatorial objects:
strongly restricted permutations and closed walks on a certain small
graph. The results in the original paper were established by inspect-
ing generating functions of the enumerating sequences.

1 Introduction
In [3] we introduced the Riviera model as a variant of the combinatorial
settlement planning model first studied in [7, 8] and further developed in [2,
4]. The original problem, motivated by a real-life application and analyzed
in [7, 8], proved to be too complex for analytical treatment, so we considered
a 1-dimensional toy model which we were able to fully solve. Here, we
briefly recall the setup. We begin with a finite strip of land divided into
consecutive lots of equal size. Each lot can be occupied by a house or left
vacant. The first requirement is that each occupied lot must be adjacent to
at least one vacant lot. This resembles a Mediterranean settlement along the
coast (hence the name ‘Riviera model’) stretching in the east-west direction,
where each house is exposed to sunlight from the south and at least one

(Tomislav Došlić) University of Zagreb Faculty of Civil Engineering, Zagreb, Croatia
and Faculty of Information Studies, Novo Mesto, Slovenia, tomislav.doslic@grad.unizg.hr

(Mate Puljiz) University of Zagreb Faculty of Electrical Engineering and Computing,
Zagreb, Croatia, mate.puljiz@fer.unizg.hr

(Stjepan Šebek) University of Zagreb Faculty of Electrical Engineering and Comput-
ing, Zagreb, Croatia, stjepan.sebek@fer.unizg.hr

(Josip Žubrinić) University of Zagreb Faculty of Electrical Engineering and Comput-
ing, Zagreb, Croatia and Technische Universität Dortmund, Fakultät für Mathematik,
Dortmund, Germany, josip.zubrinic@fer.unizg.hr

33

https://doi.org/10.5592/CO/CCD.2024.03


T. Došlić, M. Puljiz S. Šebek and J. Žubrinić

additional side (east or west depending on which side the adjacent vacant
lot is). We can concisely write such configurations as binary words with
ones denoting occupied and zeros vacant lots. The configurations satisfying
this first requirement are called permissible. An example of a permissible
configuration is:

110110001010011.

Note that the two houses on the left and right edge of the strip are assumed
to be exposed to sunlight from west and east respectively. The second re-
quirement is that the configurations be maximal, meaning that no further
houses can be added to the vacant lots without violating the first insola-
tion requirement. Clearly, the configuration above is not maximal, but the
following is:

110110101011011.

It is clear that the first (permissibility) requirement is equivalent to asking
that no three consecutive ones appear anywhere in the configuration. And it
is not hard to see that the second (maximality) requirement can be verified
by inspecting substrings of length 4 of the given configuration. To be precise,
the following lemma was proven in [3].

Lemma 1.1 (Lemma 2.1 in [3]). Let n ∈ N. A configuration in the Riviera
model is maximal if and only if, when padded with zeros, it does not contain
any of the following (decorated1) substrings:

111, 000, 0100, 0010. (1.1)

Next, with Lemma 1.1 in hand, the standard transfer matrix method ap-
proach was employed in [3] to establish a one-to-one correspondence between
maximal Riviera configurations and walks on the directed graph in Figure 1.
This digraph was created by taking all the allowed (i.e. not forbidden) sub-
strings of length 3 and adding a directed edge from u1u2u3 to v1v2v3 if and
only if they overlap progressively, meaning that u2 = v1 and u3 = v2; and
if the substring u1u2u3v3 = u1v1v2v3 is not forbidden. The shaded start-
ing/ending nodes were determined based on the boundary condition, which
in our case states that the edge lots receive sunlight from the boundary side.
By standard methods, see [3], one can now write the transfer matrix as-
sociated to this graph and obtain the bivariate generating function of the

1When inspecting whether a configuration c1 . . . cn contains a decorated word
d1 . . . dk . . . dl, we check against a padded word . . . 000c1 . . . cn000 . . . but with the un-
derlined letter of the decorated word aligned with ci for i = 1, . . . , n. This is necessary as
e.g. the configuration 10011 would otherwise be considered allowed (not containing any
of the forbidden substrings), although it is not maximal.
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100 001 011 110 101 010

Figure 1: (Figure 3 in [3]) Transfer digraph GR for the Riviera model. For
example, a maximal configuration 110011010110 is represented by the walk:
110 → 100 → 001 → 011 → 110 → 101 → 010 → 101 → 011 → 110. Each
walk must start and end at shaded nodes.

sequence (Jk,n) enumerating maximal Riviera configurations of prescribed
length n and occupancy k:

g(x, y) = 1 + xy − (x− x2)y2 + x2y3 − x3y5

1 − xy2 − x2y3 − x2y4 + x3y6 =
∞∑

n=0

∞∑
k=0

Jk,nx
kyn. (1.2)

Remark 1.2. Setting x = 1 in the expression (1.2) above, one obtains
g(1, y) = f(y), the generating function for the sequence (fn) which counts
the number of all maximal configurations of length n:

f(y) = 1 + y + y3 − y5

1 − y2 − y3 − y4 + y6 =
∞∑

n=0

( ∞∑
k=0

Jk,n

)
yn =

∞∑
n=0

fny
n. (1.3)

Similarly, by setting y = 1 in (1.2), one obtains g(x, 1) = h(x), the gener-
ating function for the sequence (hk) which counts the number of maximal
configurations (of variable length) with a fixed number k of occupied lots:

h(x) = 1 + 2x2 − x3

1 − x− 2x2 + x3 =
∞∑

k=0

( ∞∑
n=0

Jk,n

)
xk =

∞∑
k=0

hkx
k. (1.4)

By expanding the bivariate generating function g = g(x, y), we obtain the
precise distribution of the occupancies of maximal configurations relative to
their length. The first few coefficients in the expansion of g(x, y) are given
in Table 5. Note that the ratio k

n for non-zero coefficients stabilizes between
1
2 and 2

3 as n becomes large.
The first several values of the sequence (fn), associated with the generating
function f(y), can be obtained as column sums of Table 5:

1, 1, 1, 3, 3, 4, 6, 9, 12, 16, 24, 33, 46, 64, . . .

Similarly, the first several values of the sequence (hk), associated with the
generating function h(x), can be obtained as row sums of Table 5:

1, 1, 5, 5, 14, 19, 42, 66, 131, . . .
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Table 5: The coefficients of xkyn in the expansion of the bivariate generating
function g(x, y).

k\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1
1 1
2 1 3 1
3 2 3
4 1 6 6 1
5 3 10 6
6 1 10 20 10 1
7 4 22 30 10
8 1 15 49 50 15 1
9 5 40 91 70 15
10 1 21 100 168

Upon consulting The On-Line Encyclopedia of Integer Sequences (OEIS) [9],
we realized that these sequences had been already studied in quite different
settings. The sequence (fn) appears as OEIS sequence A080013 and is de-
scribed as counting certain strongly restricted permutations. The sequence
(hn) appears as OEIS sequence A096976 and is described as counting closed
walks on the path graph P3 with a loop. The equipotency of the pairs of
these combinatorial objects follows directly from the fact that their gener-
ating functions match (up to a finite degree polynomial). However, it is
possible to construct explicit bijections demonstrating these equipotencies.
This is the content of the next two sections.

2 The Riviera model and strongly restricted per-
mutations

The notion of strongly restricted permutations was introduced by Lehmer
in [5]. If W is some fixed subset of integers, one would like to count the
number of all the permutations π ∈ Sn

2 such that π(i) − i ∈ W , for all
i ∈ [n].
In [10, Examples 4.7.9, 4.7.17–18] two techniques are presented for obtaining
the generating function for the number of strongly restricted permutations
for some particular sets W , namely the transfer-matrix method and the
technique using factorization in free monoids.
In [1], Baltić devised a new technique for counting restricted permutations
in case minW = −k and maxW = r for some positive integers k ≤ r.
When W = {−2,−1, 2}, the sequence counting the corresponding restricted
permutations of length n appears in OEIS under the number A080013. The

2Sn denotes the set of all permutations of the set [n] = {1, . . . , n}.
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generating function of that sequence is 1 − y2

1 − y2 − y3 − y4 + y6 . Note that

1 − y2

1 − y2 − y3 − y4 + y6 = 1 + y3 + y4 · 1 + y + y3 − y5

1 − y2 − y3 − y4 + y6

= 1 + y3 + y4 · f(y),

where f(y) is the generating function for the number of maximal Riviera
configurations of fixed length n, see (1.3). From here, the following result
is immediate.

Theorem 2.1. The number of maximal configurations of length n in the
Riviera model is equal to the number of permutations π of length n + 4,
which satisfy the constraint

π(i) − i ∈ {−2,−1, 2}. (2.1)

It turns out that one can construct a natural bijection between these two
types of objects. The idea is to encode restricted permutations as walks on
some digraph, similar to the one in Figure 1. If those two graphs are isomor-
phic, this isomorphism would automatically produce a bijection between the
underlying combinatorial objects.
To construct this digraph we, once again, use the transfer-matrix method.
One can argue as in [10, Example 4.7.9] to show that the method is ap-
plicable in this case. Let π ∈ Sn be a permutation for which π(i) − i ∈
W = {−2,−1, 2}, for all i ∈ [n]. One can rewrite such a permutation
as a sequence of symbols in W . In order to check that such a sequence
u1 . . . un corresponds to a valid permutation, it suffices to check all the sub-
strings of length 5. This is because the function σ : [n] → [n] defined as
σ(i) = i + ui will be a permutation as soon as it is onto; and for this, one
only needs to check whether i ∈ {σ(i− 2), σ(i− 1), σ(i), σ(i+ 1), σ(i+ 2)},
for all 3 ≤ i ≤ n − 2. Additionally, one needs to check that 1 and 2 are
in the set {σ(1), σ(2), σ(3), σ(4)}, and that n − 1 and n − 2 are in the set
{σ(n− 3), σ(n− 2), σ(n− 1), σ(n)}. The effect of this being that the walks
must start and end at a certain subset of vertices of the constructed digraph.
From here, one can write Algorithm 1 that produces this digraph which is
an induced subgraph of the de Bruijn graph over the set of all 5 letter words
in the alphabet {−2,−1, 2}.
The digraph G constructed in Algorithm 1 has the vertex set V consisting
of 30 allowed words of length 5. It turns out that this graph can be further
condensed to give a smaller representation of our strongly restricted per-
mutations. If one considers all the 4-letter words {−2,−1, 2}4 that do not
appear as substrings of the 30 allowed words, one gets 59 forbidden words of
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Algorithm 1 The creation of the digraph G for strongly restricted permu-
tations

AllowedNodes = ∅
StartNodes = ∅
EndNodes = ∅
for u1u2u3u4u5 ∈ {−2,−1, 2}5 do

if 3 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then
add node u1u2u3u4u5 to AllowedNodes
if 1, 2 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then

add node u1u2u3u4u5 to StartNodes
end if
if 4, 5 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then

add node u1u2u3u4u5 to EndNodes
end if

end if
end for

E = ∅
for u1u2u3u4u5, v1v2v3v4v5 ∈ AllowedNodes do

if u2u3u4u5 = v1v2v3v4 then
add edge u1u2u3u4u5 → v1v2v3v4v5 to E

end if
end for

V = ∅
for u1u2u3u4u5 ∈ AllowedNodes do

if there is a path starting in StartNodes, passing through u1u2u3u4u5
and ending in EndNodes then

add node u1u2u3u4u5 to V
end if

end for

remove from E all the edges not involving nodes in V
return G = (V, E)
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-222

22-2 2-2-2 -2-22

-122 -1-12 2-1-1 -22-1

-2-12 -12-1 2-12
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-22-2 2-22

(a)

001100

011001 110011 100110

101100 110110 011011 001101

010110 101101 011010

101011 110101

010101 101010

(b)

Figure 2: The digraph GP in 2(a) encodes strongly restricted permutations
satisfying the constraint (2.1). The starting nodes are shaded and thicker
outlines indicate the ending nodes. The digraph G′

R in 2(b) encodes con-
figurations of the Riviera model using substrings of length 6. The nodes
corresponding to the highlighted nodes in 2(a) via the unique digraph iso-
morphism are shaded and outlined in this graph too.

length 4. By inspection, one can check that each of the 213 = 35 −30 forbid-
den 5-letter words contains one of the 4-letter forbidden words which means
that the same information contained in G can be encoded in a digraph with
a vertex set consisting of only 22 = 34 − 59 4-letter words. Finally, if we
use edges to encode allowed words, rather than just taking the whole in-
duced subgraph of the corresponding de Bruijn graph, we can condense this
digraph even further, and obtain the digraph in Figure 2(a) with 15 nodes
representing allowed 3-letter words and an edge from u1u2u3 to v1v2v3 if
and only if u1u2u3v3 = u1v1v2v3 is allowed 4-letter word. The highlighted
nodes are either starting or ending nodes, or, in one case, both.
We would now like to match the digraph in Figure 2(a), call it GP , with
the digraph in Figure 1, call it GR. Unfortunately, they are not isomorphic,
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but we can try to create higher edge graphs from the digraph GR, details
below, which encode the same information as GR — in hope of obtaining a
graph isomorphic to GP . This process is opposite of ‘condensation’ we have
performed to the digraph produced by the Algorithm 1 in order to obtain
the digraph GP .
We have already noted that the graph GR shown in Figure 1 is a subgraph
of the 3-dimensional de Bruijn graph over the alphabet {0, 1}. We can
construct a subgraph of the n-dimensional de Bruijn digraph, where n > 3,
over the same alphabet, which will encode the same information as GR.
It turns out that n = 6 will do. The vertex set of this, so called, higher
edge graph G′

R consists of all the allowed words of length 6, which one can
think of as all the possible walks of length 3 on the graph GR. A directed
edge from c1 . . . c6 to d1 . . . d6 is added to the edge set of G′

R if and only
if the corresponding words overlap progressively (c2 . . . c6 = d1 . . . d5). The
digraph G′

R is, therefore, the vertex-induced subgraph of the corresponding
6-dimensional de Bruijn graph. For more details on construction of higher
edge graphs, see [6, Definition 2.3.4].
The graph G′

R obtained by the above procedure, is shown in Figure 2(b).
Note that it is isomorphic to GP , and that this isomorphism is unique. Also
note that the set of nodes at which the walks on G′

R would be allowed to
start and end is much larger than the set highlighted in Figure 2(b). More
precisely, any node c1 . . . c6 for which c1c2c3 ∈ {110, 101, 011} would be a
starting node, and if c4c5c6 ∈ {110, 101, 011}, it would be an ending node.
But the walks of length n+1 on G′

R would then account for all the maximal
configurations in the Riviera model of length n+ 7 — and that is not what
we want, since the walks of length n+1 on GP encode the strictly restricted
permutations of [n+ 4].
If we consider the walks on G′

R which start and end at the nodes that
correspond to starting and ending nodes in GP , we immediately note that
all the configurations obtained in such a way always start with 0110 and
end with 011. Using the graph GR in Figure 1 it is clear that adding the
prefix 0110 and suffix 011 to a maximal configuration, again produces a
7-blocks longer (permissible) maximal configuration. This is because from
each starting node, there is a backward path (going along edges in the
direction opposite to the arrow direction) of length 4 which produces the
prefix 0110; also from each ending node, there is a 3-step continuation of
path which produces the suffix 011. Conversely, removing that same prefix
and suffix from a maximal configuration of length n+7, produces a maximal
configuration of length n. We can again argue using the graph GR. Any
walk starting with 011 → 110 after three steps must again reach one of the
starting nodes; and walk ending in 011 when traced backwards must, after
three steps going backwards, reach one of the ending nodes. This shows

40



Surprising bijections of the Riviera model

that there is a bijective correspondence between all the maximal Riviera
configurations of length n and the maximal Riviera configurations of length
n+7 starting with 0110 and ending with 011 which in turn are in a bijective
correspondence with the strongly restricted permutations of length n + 4.
The bijection is obtained by translating walks on GP to walks on G′

R and
the other way around.
It is, in fact, possible to specify this bijection even more concisely, cir-
cumventing the graphs in Figure 2 altogether. Compare each edge in GR
with all its associated edges in G′

R and note that the corresponding edges
in graph GP all represent adding the same symbol at the end. E.g. the
transition 011 → 110 in GR corresponds to transitions 101011 → 010110,
011011 → 110110 and 110011 → 100110 in G′

R and all of them in GP cor-
respond to adding the letter 2 at the end. Collecting all this information
together, we can label the edges of the graph GR in Figure 1 with the
appropriate letter which is being added in the permutation graph GP cor-
responding to that transition. This edge-labeled graph is given in Figure
3.
We now summarize how to bijectively map any maximal Riviera configura-
tion of length n to a strongly restricted permutation of length n + 4 using
Figure 3. Take any such maximal configuration and prefix it with 0110 and
suffix it with 011. Then take a walk over the graph in Figure 3 (which
will be of length n+ 7 − 3 = n+ 4) and collect the labels u1 . . . un+4 of all
the edges traversed. Finally, construct the bijection σ : [n+ 4] → [n+ 4] as
σ(i) = i+ ui for i ∈ [n+ 4].
As an example, the maximal configuration 10110 is first enlarged to the
maximal configuration 0110|10110|011. Next, we examine the unique walk
determined by this configuration: 011 2−→ 110 −1−→ 101 2−→ 010 −2−→ 101 −1−→
011 2−→ 110 2−→ 100 −2−→ 001 −2−→ 011. This walk generates the permutation
σ encoded with the string 2-12-2-122-2-2, which is the permutation(

1 2 3 4 5 6 7 8 9
3 1 5 2 4 8 9 6 7

)
.

We end this section with a remark which will prove useful in the next section.

Remark 2.2. Above, we have argued that taking any maximal configura-
tion c1 . . . cn and prefixing it with 0110 and suffixing it with 011 yields a
bijection between all the maximal Riviera configurations of length n and
the maximal Riviera configurations of length n + 7 starting with 0110 and
ending with 011.
If we further add prefix 10 and suffix 001 to these already extended configu-
rations, we obtain a bijective correspondence between the maximal Riviera
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100 001 011 110 101 010
-2 -2

-2

-1

2

2 2

-1

Figure 3: The digraph GR with labeled edges which encodes the bijection be-
tween maximal configurations of length n in the Riviera model and strongly
restricted permutations of length n+ 4 where W = {−2,−1, 2}.

configurations c1 . . . cn of length n and the configurations of length n + 12
starting with 100110 and ending with 011001 which, although not max-
imal (because of the boundary condition), do not properly contain3 any
substrings forbidden by Lemma 1.1. Each of those extended configura-
tions can, therefore, be represented as a walk on GR (Figure 1) starting
at the node 100 and ending at the node 001. Conversely, if a configura-
tion 100110c1 . . . cn011001 (of length n+ 12) does not properly contain any
substrings forbidden by Lemma 1.1, or equivalently, can be represented as
a walk on GR (of length n + 9) starting at 100 and ending at 001, then
after removing prefix 100110 and suffix 011001 one is left with a proper
maximal configuration c1 . . . cn of length n. This is because removing prefix
and suffix corresponds to cutting off the first part of the walk 100-001-011-
110-10c1-0c1c2 and the last part of the walk cn−1cn0-cn01-011-110-100-001.
Note that regardless of what c1, c2, cn−1, and cn are — the next node after
0c1c2 as well as the node just before cn−1cn0 will always have to be one of
the starting/ending nodes, which means that the remaining part of the walk
encodes a proper maximal configuration c1c2 . . . cn−1cn.

3 The Riviera model and closed walks on P3 with
a loop

In (1.4) we have derived the generating function h(x) for the number of
maximal Riviera configurations (of variable length) containing a fixed num-
ber k of occupied lots. This sequence appears in OEIS [9] in two instances
as A052547 with offset 3 and as A096976 with offset 5. There are three more
related sequences: A006053, A028495, and A096975, satisfying the same re-
currence relation with different initial conditions. Each of these sequences
is connected to the number of walks on the graph P3 (the path graph over

3By properly contain we mean contained as a substring within an unpadded configu-
ration.
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• • •

(a) P3 with a loop, P for short

1001 11 101

(b) P with labeled nodes

Figure 4

three nodes) with a loop added at one of the end nodes. This graph is
represented in Figure 4(a) and we denote it by P. The precise connection
relating this graph with our sequence is given in the following theorem.

Theorem 3.1. The number of maximal Riviera configurations containing
exactly k occupied lots is equal to the number of closed walks of length k+ 4
on the graph P which start and end at the node of degree 1. There is a
natural bijection relating these quantities.

Remark 3.2. If equipotency result is all one wishes to pursue, it suffices
to compare the two sequences’ generating functions. Note that

1 − x− x2

1 − x− 2x2 + x3 = 1 + x2 + x4 + x4 · 1 + 2x2 − x3

1 − x− 2x2 + x3

= 1 + x2 + x4 + x4 · h(x),

where 1 − x− x2

1 − x− 2x2 + x3 is the generating function of the sequence A096976
and h(x) is the generating function for the number of maximal Riviera
configurations (of variable length) containing a fixed number k of occupied
lots, see (1.4).

Proof of Theorem 3.1. From Lemma 1.1 we know that no three consecutive
0’s are allowed in a maximal configuration. That means that each two neigh-
boring 1’s must be separated by zero, one or two 0’s. This further means
that, after ignoring leading and trailing 0’s, each maximal configuration can
be identified by a sequence of strings in the set {11, 101, 1001}. We assume
here that the last 1 in one string overlaps with the first 1 in the next. E.g.
we would split the configuration 11011001101 as 11-101-11-1001-11-101.
From Lemma 1.1 we also see that 11 cannot be followed or preceded by 11
(as this would produce 111); 101 and 1001 cannot be followed or preceded
by 1001 (as this would produce 0100 or 0010). It is easy to see that the
remaining transitions: 1001-11 and 11-101 going in either direction, and the
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loop at 101 — can all appear in a maximal configuration and are, thus, all
allowed. These transitions are shown in the node-labeled graph P in Figure
4(b). We use undirected edges as in each case the transitions going either
way are allowed.
Consider now the mapping which to each maximal Riviera configuration
c1 . . . cn assigns the configuration 100110c1 . . . cn011001. By Remark 2.2 we
know that this map is a bijection from the set of all maximal Riviera con-
figurations with exactly k occupied lots to the set of configurations of the
form 100110c1 . . . cn011001 which have exactly k + 6 occupied lots. Those
obtained configurations are not maximal but do not properly contain sub-
strings forbidden by Lemma 1.1.
Now each of those configurations of the form 100110c1 . . . cn011001, where
c1 . . . cn is a proper maximal configuration with k occupied lots, can be rep-
resented as a walk of length k+4 on the graph P in Figure 4(b) which starts
and ends at 1001. Conversely, one easily checks (by inspecting all length 2
walks) that a walk on this graph can never produce a configuration properly
containing a substring which is forbidden by Lemma 1.1. Therefore, each
walk of length k + 4 starting and ending at 1001 will necessarily produce
a configuration of the form 100110c1 . . . cn011001 which does not properly
contain a substring forbidden by Lemma 1.1 and has k+ 6 1’s. By Remark
2.2, the word c1 . . . cn will be a proper maximal configuration with exactly
k 1’s.
Putting everything together gives us the required bijection. A maximal
Riviera configuration c1 . . . cn containing exactly k occupied lots is written
as the string 100110c1 . . . cn011001, which is then represented as a walk of
length k + 4 over the graph P. As an example, the maximal configuration
10110 is mapped to 10110 → 100110|10110|011001 which corresponds to the
walk: 1001 → 11 → 101 → 101 → 11 → 1001 → 11 → 1001 which begins
and ends with the node 1001.

4 Concluding remarks
Modern enumerative combinatorics uses a wide and evergrowing repertoire
of methods and techniques. Prominent among them are analytical methods,
based on extracting the information encoded in generating functions of the
considered sequences. Another example are the methods based on transfer
matrices. Powerful and useful as they are, in the eye of many practitioners
they both suffer from a serious shortcoming: They do not reveal the true
nature of connections between different combinatorially interesting families.
According to their opinion, only a combinatorial, bijective, proof can offer
deep(er) insight. So, combinatorial proofs are often sought even long after
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interesting results have been obtained in other ways.
In this short note we provide combinatorial proofs for two enumerative re-
sults from our earlier paper on settlement planning [3]. We have constructed
bijections connecting jammed configurations in a 1-dimensional toy model
of settlement planning with, on one hand, restricted permutations, and, on
the other hand, walks on a small graph. Hence, they reveal hidden connec-
tions between seemingly unrelated families of objects, providing support for
the above claim and justifying the effort invested in their construction.
Our toy model, simple as it is, still offers many interesting problems which
are still unanswered. For example, it would be interesting to (numerically)
simulate its progression inwards, once the sea-front is fully developed (i.e.,
when no new constructions are legally possible). Another direction, more
suitable for analytical and/or combinatorial treatment, would be to remain
in one dimension but to allow multi-storied buildings and to investigate
whether this modification results in more efficient jammed configurations.
We are confident that the interested reader will find also problems and
research questions we have overlooked.
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Plotting planar and toroidal maps

Mathieu Dutour Sikirić

Abstract
Plotting planar and toroidal maps is a common problem in graph
visualization. We present here an algorithmic implementation that
has been used in [3]. The implementation is publicly available.

1 Introduction
The graphs considered in this study can have multiple edges, and it is

also possible that both endpoints of a face are the same. A graph is said
to be of genus g if it can be embedded on a surface of genus g. If g = 0,
the graph is called planar and if g = 1, it is called toroidal. A face in such
an embedding is bounded by a sequence of edges and is homeomorphic to
a disk. This embedding gives positions of vertices, edges, and faces.

The combinatorial structure of the vertices, edges, and faces can be stud-
ied without having a specific embedding, as the individual positions of the
vertices do not matter very much. However, if one has built a graph with
edges, vertices, and faces, we may want to find an embedding, as this can
be helpful for scientific purposes and also for visualization.

The problem of graph embedding has been considered from various view-
points. In [9] a method to use the eigenvectors of the largest eigenvalues of
the adjacency matrix was used. The method works well for plane graphs
but suffers from one key problem: the inner faces tend to be very small and
not visible. Also, the method works only for planar graphs.

The program CaGe (see [1, 2]) uses an iterative process in order to get
an embedding. A priori, it works only for planar graphs. Another class of

(Mathieu Dutour Sikirić) MSM programming, Karlovačka Cesta 28B, 10450 Jastre-
barsko, Klinča Sela, Croatia, mathieu.dutour@gmail.com
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methods is to minimize the functional F

F =
∑

e=(i,j)∈E(G)
f(‖xi − xj‖)

A more powerful and conceptual technique is to use primal-dual circle
packing for obtaining a drawing (see [6]). The technique works for any genus
and graphs that are 3-connected.

2 Combinatorial representation of maps
A general 2-dimensional map M can be represented by vertices, edges,

and faces. The incidence relation between those objects is best encoded by
the notion of flags. A flag is a triple (v, e, F ) with v a vertex, e an edge,
F a face and v ∈ e ⊂ F . Denote by Flag(M) the set of all flags of M.
From the flags, we can define the flag operators σ0, σ1, and σ2. For a flag
f = (v, e, F ), the image σ0(f) is defined as the flag that is identical to
f except at the vertex, σ1(f) the flag that is identical to f except at the
edge and σ2(f) the flag that is identical to f except at the face. The flag
operators are uniquely determined by those constraints. They satisfy the
relation σ2

i = Id and σ0σ2 = σ2σ0.
The flag operators are permutations on the set of flags, and they can

be used for representing the maps efficiently. For example, the vertices
correspond to the orbits of the group generated by {σ1, σ2} on Flag(M).
The formalism of flags works well even for the non-orientable maps such as
the projective plane or the Klein bottle.

However, for the purpose of this work, the maps that we consider are
oriented. So instead of something so general, we use the directed edge
formalism. At every vertex and every edge, we associate a direction. We
define two operators:

1. The next operator n that sends a directed edge to the next one in the
positive (counterclockwise) orientation.

2. The inverse operator i that reverses the direction of the directed edge.

See Figure 1 for an example of such an action on a directed edge. Since a
planar graph has a finite number of directed edges, those operators can be
represented as two permutations. The vertices, edges, and faces correspond
to the orbits of the group generated by {n}, {i}, and {n ◦ i}.
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e
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next

invers

Figure 1: The action of the next and inverse operator on a directed edge

3 The primal-dual circle method
It is a remarkable fact that in dimension 2, we have a meta-theorem that

combinatorics=geometry. That is, combinatorics alone suffices to encode
an object. One example of such a theorem is Steinitz theorem ([8] and [10,
Chapter 4]) that states that a graph is the skeleton of a 3-dimensional
polytope if and only if it is planar and 3-connected. The primal-dual circle
packings are an effective technique that allows to represent graphs given by
their combinatorial information (see Chapter 5 of [5]).

The idea is to put circles Cvert(v) in the vertex center and face center
Cface(F ) so that:

• The interiors of the circles Cvert(v) are all distinct. Two circles Cvert(v)
and Cvert(v′) intersect in a point if and only if the vertices v and v′

are adjacent. Denote Pvert(v, v′) the intersection point.

• The interiors of the circles Cface(F ) are all distinct. Two circles
Cface(F ) and Cface(F ′) intersect in a point if and only if the faces
F and F ′ share an edge. Denote Pface(F, F ′) the intersection point.

• If v and v′ are adjacent vertices with an edge e shared between faces
F and F ′ then we have Pvert(v, v′) = Fface(F, F ′)

Those properties are represented in Figure 2.
According to [6], if a graph G of genus g is 3-connected and simply

connected then there exists an embedding of the universal cover of G into
the sphere (if g = 0), the plane (if g = 1) or the hyperbolic plane (if g > 1).
See Figure 3 for one such example.
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f

g

Figure 2: The local picture of a primal-dual circle representation

Figure 3: The edges, circle, and face circles of a primal-dual representation
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Due to the invariance by duality of the primal-dual circle packing, it
makes sense to consider the medial graph Med(G) for a graph of genus
g. It is the graph whose vertices are the vertices and faces of G, and two
vertices of Med(G) are adjacent if one is a vertex u of G, and another is a
face F of G and u ∈ F . The graph Med(G) is also of genus g and its faces
are of size 4. This is the method used in this work.

4 Numerical techniques for the planar case
The equation system that needs to be resolved for plotting the graph

represents the fact that the sum of the angles is 2π at each vertex. The
angles are computed from the radii of the circles Cvert(u) and Cface(F )

In the case of genus g = 1, the angle equations are simpler to write down
since we do not have to deal with spherical or hyperbolic trigonometry. We
define for each vertex v of Med(G) the angle sum:

ϕv =
∑

uv∈E(Med(G))
arctan

(
ru

rv

)
.

The equations to resolve are thus

ϕv = π for v ∈ V (G).

This is a system of non-linear equations, and we have the equation∑
v∈V (Med(G))

ϕv − π = 0. (4.1)

This conservation equation renders the system underdetermined. Thus, if
the collection (ru) is a solution, then (λru) is also a solution.

[6] has given an algorithm for computing the primal dual circle pack-
ings radii. It consists of computing the defect at every node and increas-
ing/decreasing the radius value according to ϕv > π or ϕv < π. It is a
geometric method that is quite efficient, but in some cases it is very slow.

Newton’s method cannot be applied right away as the problem is un-
derdetermined. We address this by restricting ourselves to the vector space
of directions that do not change the sum of the radius of all the circles.
Another more essential problem is that when we apply the Newton method,
we can obtain a negative value for some radii. The technique that we use
is instead to rescale the increment by a factor c in the following way:

x(n+1) = x(n) − c
f(x(n))
f ′(x(n))

with 0 < c ≤ 1

In the terminology of [7] it is Newton method with a line search. We start
with a factor c = 1 and then decrease it by a factor 1.2 until:
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On vertex On edge On face

Figure 4: The k-fold axis position can be on a vertex, an edge, or a face

1. All the radii are positive.

2. The sum of the absolute error ∑v (ϕv − π)2 has decreased.
This turns out to work very well.

5 Graphical niceties
Obtaining a graphical representation of a map can be helpful. However,

we sometimes want something nicer to look at. For example, if a graph has a
3-fold axis of symmetry, then we may want to have this axis directly visible
on the map. If the axis is passing through a face, then we just need to select
the appropriate face. If, however, the axis passes through two vertices, then
we have a problem. We need to represent it, but we must choose the correct
axis. It is also possible for a 2-fold axis to pass through two edges. Some
examples are shown in Figure 4.

The primal-dual technique requires 3-connectivity and will not work with
2-gons and 1-gons. The technique is to refine it. First, for a map M we
replace it with the order complex map Ord(M) = Trunc(Med(M)). Then
we insert a vertex on each edge. Finally, we put a vertex on each face and
connect it to all incident vertices. The resulting triangulation is 3-connected.

6 CaGe process and the integrated algorithm
The algorithm of [1] is used for the drawing of planar graphs. It works

in the following way:
• Select an external face F and puts the vertices in a circle.

• Put a point xF in the center of each face that is not external. We
have a collection of points (xv) ∪ (xF ).
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Figure 5: The scheme used for transform a graph into another that is easier
to draw.

• For each point x that is not on the outer circle and that is contained
in the triangles (x, xi, xi+1), we have

x = 1∑m
i=1A

2
T (x, xi, xi+1)

m∑
i=1

A2
T (x, xi, xi+1)x+ xi + xi+1

3

with AT (x, y, z) the area of the triangle of vertices x, y and z.

• The equation can be solved by fixed-point iterations.

For a planar graph, we apply the following construction:

• Apply the truncation scheme of Section 5.

• Depending on the choice of the external face (vertex, edge, or face),
select the corresponding external face.

• Apply the CaGe process to find an embedding.

• From the positions of the various points, build the path that corre-
sponds to an edge of the graph.

The CaGe process is an averaging process where we average the position
of the neighbor in order to update the position of a point. This same process
can be applied in the toroidal case. This can yield a clear improvement to
the obtained graph as shown in Figure 6.
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Primal dual
Primal dual followed by

CaGe process

Figure 6: The graph of a toroidal map obtained by the primal-dual processed
followed by the one with the CaGe process applied afterward

7 The effective design of the software and how to
use it

It is important to have Open Source code so that other users can benefit
from the created software. But, that is not quite sufficient if the Open
source software is very difficult to use. Thus, we have tried to make a
Python-based solution which should be convenient as Python has emerged
as the equivalent of English in Computer Science: not a perfect language,
but everybody is using it.

The computation of the coordinates is done with a code written in C++.
The matrix algebra is done by using the Eigen library ([4]). The input file
of the program follows the Fortran Namelist format, which is a simple yet
reasonable to use format.

The data are then exported to a SVG file. The SVG file format is adequate
for this purpose since it is a symbolic text file format that can be used in
Web browsers. Also, SVG files can be edited by inkscape. This allows users
to easily edit according to their wishes.

The Python code is accessed via

pip3 install https://github.com/MathieuDutSik/PyPlot_orientedmap

Alas, not everything is so simple with the program usage. The difficulty
is in creating the input. As convenient as the format with directed edges is,
it has a distinct computational aspect to it.
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Application for a 3-adic Valuation for Large

Schröder Numbers
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Abstract
By using central Delannoy numbers and a new theorem from number
theory, we give almost a complete 3-adic valuation of large Schröder
numbers Sn, except for the case S6k+4, k ≥ 0.

Keywords: Large Schröder number, Central Delannoy number, 3-adic val-
uation, Catalan number, Kummer’s theorem.
2020 Mathematics Subject Classification: 05A10, 11B65.

1 Introduction
The large Schröder Numbers Sn count all lattice paths in the plane from
(0, 0) to (n, n) by using horizontal steps (1, 0), vertical steps (0, 1), and
diagonal steps (1, 1) such that never rise above the main diagonal y = x. It
is known [6, Exercise 6.39], at least, 11 combinatorial objects are counted
by large Schröder numbers Sn.
A formula for calculating large Schröder numbers Sn is also well-known:

Sn =
n∑

k=0

1
k + 1

(
n+ k

k

)(
n

k

)
. (1.1)

This sequence starts with: S0 = 1, S1 = 2, S2 = 6, S3 = 22, S4 = 90,
S5 = 394, S6 =1806, . . .; and it can be found as sequence A006318 in [5]
Recently, a new formula for a 3-adic valuation of large Schröder numbers
Sn has been discovered, where the p-adic valuation of an integer y ≥ 0 is

(Jovan Mikić) Faculty of Technology, Faculty of Natural Sciences and Mathematics,
University of Banja Luka, Bosnia and Herzegovina, jovan.mikic@tf.unibl.org
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definied as follows: Let p be a prime number, and let y be an integer. Then
vp(y) denotes the exponent of the highest power of the prime number p that
divides y, i.e., pvp(y) divides y, pvp(y)+1 does not divide y, and is called the
p-adic valuation of y.
It is readily verified that v3(S0) = v3(S1) = v3(S3) = v3(S5) = 0, v3(S2) =
v3(S6) = 1, and v3(S4) = 2.
Furthermore, it is well-known that Catalan number Cn counts all lattice
paths in the plane from (0, 0) to (n, n) by using horizontal steps (1, 0) and
vertical steps (0, 1) that never rise above the main diagonal y = x. Catalan
numbers Cn = 1

n+1
(2n

n

)
represent the famous sequence which has the most

applications in combinatorics after the binomial coefficients.
This sequence starts with: C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14,
C5 = 42, C6 = 132, . . .; and it can be found as sequence A000108 in [5]. It
is readily verified that v3(C0) = v3(C1) = v3(C2) = v3(C3) = v3(C4) = 0,
and v3(C5) = v3(C6) = 1.
Now, we are ready to present a recently [4, Theorem 6, Eqns. (28) and (29),
p. 6] discovered formula for a 3-adic valuation of large Schröder numbers
Sn:

Theorem 1.1. Let n be a non-negative integer. Then the following formulae

v3(S2n+1) = v3(Cn), (1.2)
v3(S2n+2) = 1 + v3(2n+ 1) + v3(Cn). (1.3)

hold.

The Equation (1.2) represents, by our opinion, one of the most beautiful
results in number theory. It tells us that large Schröder numbers with odd
indices have the same factorization of powers of three as Catalan numbers
Cn.
Recently, the proof of Theorem 1.1 was given using the little Schröder num-
bers sn. The little Schröder numbers sn count, among other things, the
number of plane trees with a given set of leaves, the number of ways of in-
serting parentheses into a sequence, and the number of ways of dissecting a
convex polygon into smaller polygons by inserting diagonals. Furthermore,
if n is a natural integer, then it is known that sn = 1

2 · Sn.
This sequence starts with: s0 = 1, s1 = 1, s2 = 3, s3 = 11, s4 = 45,
s5 = 197, s6 = 903, . . .; and it can be found as sequence A001003 in [5].
Obviously, v3(sn) = v3(Sn), for any non-negative integer n.
The aim of this paper is to give an another proof of Theorem 1.1. We give
almost a complete proof of Theorem 1.1 by using central Delannoy numbers
Dn and a new theorem from number theory.
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The central Delannoy numbers Dn represent the number of lattice paths in
the plane from (0, 0) to (n, n) by using horizontal steps (1, 0), vertical steps
(0, 1), and diagonal steps (1, 1). Such paths are also known in the literature
as royal paths. Sulanke [7] gave, in a recreational spirit, a collection of 29
configurations counted by these numbers.
For calculating central Delannoy numbers Dn, there are, at least, two for-
mulae [1, Eq. (1), p. 1]:

Dn =
n∑

k=0

(
n

k

)2

2k, (1.4)

Dn =
n∑

k=0

(
n+ k

k

)(
n

k

)
. (1.5)

This sequence starts with: D0 = 1, D1 = 3, D2 = 13, D3 = 63, D4 = 321,
D5 = 1683, D6 = 8989, . . .; and it can be found as sequence A001850
in [5]. It is readily verified that v3(D0) = v3(D2) = v3(D6) = 0, v3(D1) =
v3(D4) = 1, and v3(D3) = v3(D5) = 2.
It is known [4, Eq. 5, p. 2] that central Delannoy numbers satisfy the fol-
lowing second order recurrence relation:

(n+ 2)Dn+2 = 3(2n+ 3) ·Dn+1 − (n+ 1) ·Dn. (1.6)

A connection between central Delannoy numbers and large Schröder num-
bers is given [4, Eq. 6, p. 2] by the following formula:

Sn = 1
2

· (−Dn−1 −Dn+1 + 6Dn), (1.7)

where n is a natural number.
Finally, we present a recently discovered new theorem from number theory.
Let x and y be integers such that x 6= 0 and x 6= ±1. Let ωx(y) denote
the exponent of the highest power of an integer x that divides an integer y.
Note that we shall use the notation vp(y) instead of ωx(y) when the integer
x is equal to a prime number p.
Let n be a non-negative integer. Let a and b be integers such that are
relatively prime and a 6= −b, as well as a+ b 6= ±1.
The recently discovered theorem [4, Theorem 1, Eqns. (18) and (19)] from
number theory states that
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Theorem 1.2.

ωa+b(
2n∑

k=0

(
2n
k

)2

· a2n−k · bk) = ωa+b(
(

2n
n

)
), (1.8)

ωa+b(
2n+1∑
k=0

(
2n+ 1
k

)2

· a2n+1−k · bk) = 1 + ωa+b((2n+ 1) ·
(

2n
n

)
). (1.9)

By setting a := 2 and b := 1 in (1.8) and (1.9), we obtain the formulae
for calculating a 3-adic valuation of central Delannoy numbers [4, Theorem
5, Eqns. (27) and (26), p.6 ], where v3(y) = ω3(y), as we said before (see
also [2]). Therefore, the following two formulae are true for any non-negative
integer n:

v3(D2n) = v3(
(

2n
n

)
), (1.10)

v3(D2n+1) = 1 + v3(2n+ 1) + v3(
(

2n
n

)
). (1.11)

Recently, Lengyel gave, among other, the formula [1, Theorem 10, p. 8] for
3-adic valuation of central Delannoy numbers. However, his formula is true
for any n sufficiently large. Our two formulae from Eqns. (9) and (10) are
true for any natural number n.
Lengyel also gave the formula [1, Theorem 17, p. 19] for the 3-adic valuation
of large Schröder numbers Sn for the case n− 1 is divisible by 3.
The rest of the paper is structured, as follows: in the second section, we
present auxiliary results. In the third section, we give a proof of (1.2). In
the fourth section, we give a proof of (1.3) for the cases n− 2 is divisible by
3 and n is divisible by 3.

2 Auxiliary Results
Our first auxiliary result is:

Proposition 2.1. Let n be a natural number. Then the following recurrence
relation holds:

2(n+ 1)Sn = 3Dn −Dn−1. (2.1)

The second auxiliary result is:

Proposition 2.2. Let n be a non-negative integer. Then the following
recurrence relation holds:

2(2n+ 1)Sn = Dn+1 −Dn−1. (2.2)
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Finally, the third auxiliary result is:

Proposition 2.3. Let k be a non-negative integer. Then the two following
equations hold:

v3(
(

6k + 2
3k + 1

)
) = v3(

(
6k
3k

)
) = v3(

(
2k
k

)
) (2.3)

v3(
(

6k + 4
3k + 2

)
) = 1 + v3(2k + 1) + v3(

(
2k
k

)
) (2.4)

Proofs of (2.1) and (2.2) easily follow from (1.6) and (1.7). Furthermore,
the proof of (2.3) follow from Kummer’s theorem [3]. Namely, we recall that
Kummer’s theorem states that for given integers n ≥ m ≥ 0 and a prime
number p, the p-adic valuation of the binomial coefficient

(n
m

)
is equal to

the number of carryovers that occur when m and n−m are added in base
p.
Finally, the proof of (2.4) follows from (2.3) and by setting n = 3k + 1 in
the well-known equation:(

2n+ 2
n+ 1

)
= 2(2n+ 1)Cn; (2.5)

where n is a non-negative integer.
Obviously, by the definition of Catalan numbers, it follows that

v3(Cn) = v3(
(

2n
n

)
) − v3(n+ 1).

Therefore, we leave the proofs of the auxiliary results to the readers.

3 A Proof of the Eq. (1.2)
Substituting 2n+ 1 for n in (2.1), we get

4(n+ 1)S2n+1 = 3D2n+1 −D2n, (3.1)

where n is a non-negative integer.
From (3.1) it follows that

v3(n+ 1) + v3(S2n+1) = v3(3D2n+1 −D2n). (3.2)

By (1.10) and (1.11), we know that

v3(3 ·D2n+1) = 1 + v3(D2n+1) > 1 + v3(D2n) > v3(D2n). (3.3)
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From (3.3) it follows that

v3(3D2n+1 −D2n) = v3(D2n). (3.4)

Furthermore, by (3.4), (3.2) becomes

v3(n+ 1) + v3(S2n+1) = v3(D2n). (3.5)

Finally, by (1.10), we have gradually:

v3(n+ 1) + v3(S2n+1) = v3(
(

2n
n

)
), (3.6)

v3(S2n+1) = v3(
(

2n
n

)
) − v3(n+ 1), (3.7)

v3(S2n+1) = v3( 1
n+ 1

·
(

2n
n

)
), (3.8)

v3(S2n+1) = v3(Cn). (3.9)

The last equation proves the assertion (1.2).

4 A Proof of (1.3)
We give a proof of (1.3) for the cases n−2 is divisible by 3 and n is divisible
by 3.
Substituting 2n+ 2 for n in (2.2), we get

2(4n+ 5)S2n+2 = D2n+3 −D2n+1, (4.1)

where n is a non-negative integer.
By (4.1), it follows that

v3(4n+ 5) + v3(S2n+2) = v3(D2n+3 −D2n+1). (4.2)

The first case:
Let n − 2 be divisible by 3. Then n = 3k + 2, where k is a non-negative
integer. Since v3((4(3k + 2) + 5) = v3(12k + 13) = 0, we get from equation
(4.2):

v3(S6k+6) = v3(D6k+7 −D6k+5). (4.3)

By (1.11) and Kummer’s theorem, it can be shown that

v3(D6k+7) = 1 + v3(2k + 1) + v3(
(

2k
k

)
) − v3(k + 1). (4.4)
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Furthermore, by (1.11), it follows that

v3(D6k+5) = 2 + v3(2k + 1) + v3(
(

2k
k

)
). (4.5)

By Eqns. (4.4) and (4.5), it follows that v3(D6k+7) < v3(D6k+5). Therefore,
we conclude that

v3(D6k+7 −D6k+5) = v3(D6k+7). (4.6)
By using (4.4) and (4.6), (4.3) becomes

v3(S6k+6) = 1 + v3(2k + 1) + v3(
(

2k
k

)
) − v3(k + 1). (4.7)

By setting n = 3k + 2 in (1.3), the equation (1.3) gradually becomes

v3(S6k+6) = 1 + v3(6k + 5) + v3(C3k+2),

= 1 + v3(
(

6k + 4
3k + 2

)
) − v3(3k + 3),

= 1 + (1 + v3(2k + 1) + v3(
(

2k
k

)
)) − 1 − v3(k + 1),

= 1 + v3(2k + 1) + v3(
(

2k
k

)
) − v3(k + 1). (4.8)

By using (4.7) and (4.8), it follows that (1.3) is true if n = 3k + 2. This
completes the proof of the first case.
The second case:
Let n be a non-negative integer divisible by 3. Then n = 3k, where k ≥ 0.
By setting n = 3k in (4.1), we obtain that

v3(S6k+2) = v3(D6k+3 −D6k+1). (4.9)
By using (1.11) and (2.4), it can be shown that

v3(D6k+3) = 1 + v3(6k + 3) + v3(
(

6k + 2
3k + 1

)
),

= 2 + v3(2k + 1) + v3(
(

2k
k

)
). (4.10)

On the other hand, by using (1.11) and (2.3), it can be shown that

v3(D6k+1) = 1 + v3(
(

2k
k

)
). (4.11)
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By using (4.10) and (4.11), it follows that v3(D6k+1) < v3(D6k+3). Hence,
we conclude that

v3(D6k+3 −D6k+1) = v3(D6k+1). (4.12)

Therefore, by using (4.12), it follows that

v3(S6k+2) = 1 + v3(
(

2k
k

)
). (4.13)

By setting n = 3k in (1.3), the equation (1.3) gradually becomes

v3(S6k+2) = 1 + v3(6k + 1) + v3(C3k),

= 1 + v3(
(

6k
3k

)
) − v3(3k + 1),

= 1 + v3(
(

2k
k

)
). (4.14)

By using (4.13) and (4.14), it follows that (1.3) is true for n = 3k. This
completes the proof of the second case.

Remark 4.1. The case n− 1 is divisible by 3 of (1.3) must be treated with
another approach (see, for example, [1, Theorem 17, p. 19] or [4, Section 12,
p. 25]) due to the fact that

v3(D6k+5) = v3(D6k+3) = 1 + v3(D6k+4). (4.15)

We conjecture that the following equation is true:

v3(3D6k+4 −D6k+3) = v3(D6k+3), (4.16)

where k ≥ 0.
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On two sequences and their hypersequences

Daniele Parisse

Abstract
We study the hypersequences

(
a

(r)
n

)
n∈N0

and
(
b

(r)
n

)
n∈N0

, r ∈ N0, of
the two sequences an := (−1)n and bn := (−1)n+1n, n ∈ N0. First, we
show the relationship between these hypersequences. Subsequently,
we prove that both the rth rows and the nth columns of the arrays(
a

(r)
n

)
and

(
b

(r)
n

)
, r, n ∈ N0, satisfy linear recurrence relations. This

yields alternative representations of a(r)
n and b

(r)
n . Finally, we deter-

mine their ordinary generating functions and the recurrence relations
of two special subsequences.

Keywords: Hypersequences; recurrences; binomial coefficients; Stirling
numbers of the first kind; ordinary generating functions; Catalan numbers.
2020 Mathematics Subject Classification: 05A10, 05A15, 11B37.

1 Introduction
The sequence (cn) = (0, 1,−1, 2,−2, 3,−3, 4,−4, . . .) is the sequence
A001057 in the On-Line Encyclopedia of Integer Sequences (OEIS ®) [3]. It
is the sequence of all integers and can be described as follows: start from 0
and go forward and backward with increasing step sizes. Accordingly, the
sequence can be defined by

c2n = −n, c2n+1 = n+ 1, n ≥ 0, (1.1)

showing that the function c : N0 → Z, n 7→ (−1)n+1 ·
⌊

n+1
2
⌋

is a bijection.
Since the successor function s : N0 → N, n 7→ n+ 1, is also a bijection, this
shows that N, N0, and Z have the same cardinality, namely ℵ0, the first
transfinite cardinal number.

(Daniele Parisse) Airbus Defence and Space GmbH, Germany, daniele.parisse@t-
online.de
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Lemma 1.1. The sequence (cn)n∈N0 satisfies the recurrences

c0 = 0, cn+1 = cn + (n+ 1)(−1)n, n ≥ 0, (1.2)

and
c0 = 0, cn+1 = −cn + 1

2
(
1 + (−1)n), n ≥ 0, (1.3)

which have the solution

cn =
n∑

k=0
(−1)k+1k = 1

4
(
1−(2n+1)(−1)n) = 2·

(⌊n+ 1
2

⌋)2
−
(
n+ 1

2

)
, (1.4)

for n ≥ 0.

Proof. By definition, we have c0 = 0. Let n be even, that is n = 2m, m ∈
N0. Then, by (1.1) we have cn+1 = c2m+1 = m + 1, and cn = c2m = −m.
Therefore, cn + (n+ 1)(−1)n = c2m + (2m+ 1)(−1)2m = −m+ (2m+ 1) =
m+1 = c2m+1 = cn+1. Now, let n be odd, that is n = 2m+1, m ∈ N0. Then,
again by (1.1) we have cn+1 = c2m+2 = −(m+ 1), and cn = c2m+1 = m+ 1.
Hence, cn+1 − cn = c2m+2 − c2m+1 = −(m + 1) − (m + 1) = −(2m + 2) =
(2m+ 2) · (−1)2m+1 = (n+ 1) · (−1)n, and these two cases prove (1.2).
Let n be even, that is n = 2m, m ∈ N0. Then, by (1.1) we have cn+1 + cn =
c2m+1+c2m = m+1+(−m) = 1 = (1+(−1)2m)/2. Similarly, for n odd, that
is n = 2m+1, m ∈ N0, we have again by (1.1) cn+1 + cn = c2m+2 + c2m+1 =
−(m+ 1) +m+ 1 = 0 = (1 + (−1)2m+1)/2, and this proves (1.3).
The solution of the recurrence (1.2) can be obtained by the method of
backward substitution and noting that c0 = 0

cn = cn−1 − n · (−1)n

= cn−2 − (n− 1) · (−1)n−1 − n · (−1)n

...
= c0 − 1 · (−1)1 − 2 · (−1)2 − · · · − (n− 1) · (−1)n−1 − n · (−1)n

= −
n∑

k=1
(−1)kk =

n∑
k=0

(−1)k+1k,

and this is the first formula of (1.4).
Adding Equations (1.2) and (1.3) (for n−1 instead of n), we get the second
formula of (1.4).
Finally, let us evaluate Sn :=

∑n
k=0(−1)k+1k. It is well-known that Tn :=∑n

k=0 k =
(n+1

2
)
. Then Sn+Tn =

∑n
k=0

(
1+(−1)k+1)k = 2

∑b n+1
2 c

k=1 (2k−1) =
2
(⌊

n+1
2
⌋)2. Solving this equation for Sn, we obtain the third formula of

(1.4).
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Remark 1.2. By (1.2) we obtain two alternative recurrences for (cn),
namely

c0 = 0, c1 = 1, cn+2 = cn − (−1)n, n ≥ 0, (1.5)
and

c0 = 0, c1 = 1, c2 = −1, cn+3 = −cn+2 + cn+1 + cn, n ≥ 0, (1.6)

because cn+2 = cn+1 − (n+ 2)(−1)n = cn + (n+ 1)(−1)n − (n+ 2)(−1)n =
cn − (−1)n. This proves (1.5). Consequently, cn+3 = cn+1 + (−1)n, cn+2 =
cn − (−1)n. The recurrence relation (1.6) now follows by adding these two
equations.
Note that the first formula on the right-hand side of (1.4) states that
(cn) is the sequence of partial sums of bn := (−1)n+1n, n ∈ N0, that is
(bn) = (0, 1,−2, 3,−4, 5,−6, 7,−8, . . .) (the sequence A181983) and that
the sequence of nonnegative integers (n) = (0, 1, 2, 3, 4, 5, . . .) (the sequence
A001477) is given by ((−1)n+1bn)n∈N0 . Hence, in this paper we shall study
the hypersequences of (bn)n∈N0 and those of the closely related sequence
an := (−1)n, n ∈ N0 (the sequence A033999).

2 Hypersequences of (an)n∈N0 and (bn)n∈N0

Let (fn)n∈N0 be an arbitrary sequence (of real or complex numbers). Then
the hypersequence of the rth generation is defined recursively for all r ∈ N

and n ∈ N0 as

f (r)
n :=

n∑
k=0

f
(r−1)
k , and f (0)

n := fn. (2.1)

For r = 1, we have f
(1)
n =

∑n
k=0 f

(0)
k =

∑n
k=0 fk and this is the se-

quence of partial sums of (fn)n∈N0 ; for r = 2, we have f (2)
n =

∑n
k=0 f

(1)
k =∑n

k=0
(∑k

j=0 fj
)

and this is the sequence of partial sums of (f (1)
n )n∈N0 , and

so on.
By means of this definition we obtain the array

(
f

(r)
n
)
, where r ∈ N0 is the

row and n ∈ N0 is the column of this array (see Table 1).
The next theorem is well-known (see, e.g., [1, Proposition 2, p. 945] for the
special case f i

0 = f0 for all i ∈ {1, . . . , r}). The second equation follows
from the fact that k ∈ {0, 1, . . . , n} if and only if n− k ∈ {0, 1, . . . , n}.
Theorem 2.1. Let (fn)n∈N0 be an arbitrary sequence (of real or complex
numbers) and (f (r)

n )n∈N0, r ∈ N0, be the hypersequence of the rth generation
as defined before. Then for all r ∈ N and n ∈ N0

f (r)
n =

n∑
k=0

(
n+ r − 1 − k

r − 1

)
fk =

n∑
k=0

(
r + k − 1

k

)
fn−k. (2.2)
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r\n 0 1 2
0 f0 f1 f2
1 f0 f0 + f1 f0 + f1 + f2
2 f0 2f0 + f1 3f0 + 2f1 + f2
3 f0 3f0 + f1 6f0 + 3f1 + f2
4 f0 4f0 + f1 10f0 + 4f1 + f2
5 f0 5f0 + f1 15f0 + 5f1 + f2

r\n 3 4
0 f3 f4
1 f0 + f1 + f2 + f3 f0 + f1 + f2 + f3 + f4
2 4f0 + 3f1 + 2f2 + f3 5f0 + 4f1 + 3f2 + 2f3 + f4
3 10f0 + 6f1 + 3f2 + f3 15f0 + 10f1 + 6f2 + 3f3 + f4
4 20f0 + 10f1 + 4f2 + f3 35f0 + 20f1 + 10f2 + 4f3 + f4
5 35f0 + 15f1 + 5f2 + f3 70f0 + 35f1 + 15f2 + 5f3 + f4

Table 6: The hypersequences (f (r)
n )n∈N0 , r ∈ N0, of (fn)n∈N0

Applying this theorem to the sequences fn := an and fn := bn, n ∈ N0, we
obtain the following results (see Table 2 and Table 3).

Corollary 2.2. For all r, n ∈ N0 :

a(r)
n =

n∑
k=0

(
n+ r − 1 − k

r − 1

)
(−1)k =

n∑
k=0

(
r + k − 1

k

)
(−1)n−k (2.3)

b(r)
n =

n∑
k=0

(
n+ r − 1 − k

r − 1

)
(−1)k+1k =

n∑
k=0

(
r + k − 1

k

)
(−1)n−k+1(n− k).

(2.4)

The next corollary gives the relationship between these hypersequences.

Corollary 2.3. For all r, n ∈ N0 :

a(r)
n = b(r)

n + b
(r)
n+1 (2.5)

and, conversely,

b(r)
n =

n∑
k=1

(−1)k+1a
(r)
n−k =

n−1∑
k=0

(−1)n−k+1a
(r)
k . (2.6)
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Proof. By (2.4) we have

b
(r)
n+1 =

n+1∑
k=0

(
r + k − 1

k

)
(−1)n+2−k(n+ 1 − k)

=
n+1∑
k=0

(
r + k − 1

k

)
(−1)n−k(n− k) +

n+1∑
k=0

(
r + k − 1

k

)
(−1)n−k

= −
n∑

k=0

(
r + k − 1

k

)
(−1)n−k+1(n− k) +

(
r + n

n+ 1

)
+

+
n∑

k=0

(
r + k − 1

k

)
(−1)n−k −

(
r + n

n+ 1

)
= −b(r)

n + a(r)
n ,

and this proves (2.5).
Conversely, applying the method of backward substitution we obtain from
(2.5)

b(r)
n = −b(r)

n−1 + a
(r)
n−1

= −
(

− b
(r)
n−2 + a

(r)
n−2

)
+ a

(r)
n−1 = b

(r)
n−2 − a

(r)
n−2 + a

(r)
n−1

= −b(r)
n−3 + a

(r)
n−3 − a

(r)
n−2 + a

(r)
n−1

= · · · · · · · · · · · · · · · · · · · · ·

= (−1)nb
(r)
0 +

n∑
k=1

(−1)k+1a
(r)
n−k.

Together with b
(r)
0 = 0 this proves the second formula of (2.6). Finally, the

first formula of (2.6) follows from the fact that k ∈ {1, 2, . . . , n} if and only
if n− k ∈ {0, 1, . . . , n− 1}.

This corollary shows that knowing
(
b

(r)
n
)

n∈N0
, we obtain

(
a

(r)
n
)

n∈N0
from

(2.5) and, conversely, knowing
(
a

(r)
n
)

n∈N0
, we obtain

(
b

(r)
n
)

n∈N0
from (2.6).

The hypersequences of the rth generation
(
a

(r)
n
)

and
(
b

(r)
n
)

satisfy the fol-
lowing recurrences:

Theorem 2.4. For all r ∈ N0 :

a
(r)
0 = 1, a

(r)
n+1 = −a(r)

n +
(
r + n

n+ 1

)
, n ≥ 0, (2.7)

b
(r)
0 = 0, b

(r)
1 = 1, b

(r)
n+1 = −2b(r)

n − b
(r)
n−1 +

(
r + n− 1

n

)
, n ≥ 1. (2.8)
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r\n 0 1 2 3 4 5 6 7 8 9 10
0 1 -1 1 -1 1 -1 1 -1 1 -1 1
1 1 0 1 0 1 0 1 0 1 0 1
2 1 1 2 2 3 3 4 4 5 5 6
3 1 2 4 6 9 12 16 20 25 30 36
4 1 3 7 13 22 34 50 70 95 125 161
5 1 4 11 24 46 80 130 200 295 420 581
6 1 5 16 40 86 166 296 496 791 1211 1792
7 1 6 22 62 148 314 610 1106 1897 3108 4900

Table 7: The hypersequences of (an)n∈N0

r\n 0 1 2 3 4 5 6 7 8 9 10
0 0 1 -2 3 -4 5 -6 7 -8 9 -10
1 0 1 -1 2 -2 3 -3 4 -4 5 -5
2 0 1 0 2 0 3 0 4 0 5 0
3 0 1 1 3 3 6 6 10 10 15 15
4 0 1 2 5 8 14 20 30 40 55 70
5 0 1 3 8 16 30 50 80 120 175 245
6 0 1 4 12 28 58 108 188 308 483 728
7 0 1 5 17 45 103 211 399 707 1190 1918

Table 8: The hypersequences of (bn)n∈N0

72



On two sequences and their hypersequences

Proof. By (2.4) it follows that for all n ≥ 0

a
(r)
n+1 =

n+1∑
k=0

(
r + k − 1

k

)
(−1)n+1−k

= −
n∑

k=0

(
r + k − 1

k

)
(−1)n−k +

(
r + n

n+ 1

)

= −a(r)
n +

(
r + n

n+ 1

)
.

Together with a
(r)
0 = 1 this proves the assertion (2.7).

By (2.5) and (2.7) it follows that b(r)
n = −b(r)

n−1 + a
(r)
n−1 and a

(r)
n−1 = −a(r)

n +(r+n−1
n

)
for all n ≥ 1. Substituting the last equation into the first one, we

get b(r)
n = −b(r)

n−1 − a
(r)
n +

(r+n−1
n

)
. By (2.5) it follows that b(r)

n = −b(r)
n−1 −(

b
(r)
n + b

(r)
n+1

)
+
(r+n−1

n

)
. Solving this equation for b(r)

n+1, we obtain (2.8) valid
for all n ≥ 1. The initial values for all r ≥ 0 are by definition b

(r)
0 = 0 and

b
(r)
1 =

∑1
k=0 b

(r−1)
k = b

(r−1)
0 + b

(r−1)
1 = b

(r−1)
1 = b

(r−2)
1 = · · · = b

(0)
1 = 1, and

this proves (2.8).

We now derive alternative representations of a(r)
n and b

(r)
n .

Theorem 2.5. For all n ∈ N0 :

a(0)
n = (−1)n, 2a(r+1)

n = a(r)
n +

(
r + n

n

)
, r ≥ 0, (2.9)

with the solution

a(r)
n = 1

2r

(
(−1)n +

r−1∑
k=0

2k

(
n+ k

k

))
, (2.10)

and for r ≥ 1

b(0)
n = (−1)n+1n,

b(1)
n = 1

4
(
1 − (2n+ 1)(−1)n),

4b(r+1)
n = 4b(r)

n − b(r−1)
n +

(
r + n− 1
n− 1

)
,

(2.11)

with the solution

b(r)
n =

n−1∑
k=0

(−1)n−k+1a
(r)
k = (−1)n+1

2r
·
(
n+

r−1∑
j=0

2j
( n−1∑

k=0
(−1)k

(
k + j

j

)))
.

(2.12)
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Proof. First, we derive a recurrence relation of a(r)
n with respect to r. By

definition, we have a(0)
n = an = (−1)n. By (2.3) and by the addition formula

for binomial coefficients ( [2, Equation (5.8)]) it follows that for all r ≥ 0

a(r+1)
n =

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k

=
n∑

k=0

(
r + k − 1

k

)
(−1)n−k + (−1)n

n∑
k=0

(
r + k − 1
k − 1

)
(−1)n−k.

The first term on the right-hand side is by definition equal to a(r)
n , whereas

the second term is equal to
n∑

k=1

(
r + k − 1
k − 1

)
(−1)n−k =

n−1∑
k=0

(
r + k

k

)
(−1)n−(k+1)

= −
n−1∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k.

Hence,

a(r+1)
n = a(r)

n −
n−1∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k

= a(r)
n −

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k +

(
r + n

n

)

= a(r)
n − a(r+1)

n +
(
r + n

n

)
.

By solving this equation for a(r+1)
n , the statement (2.9) follows.

The solution of this recurrence relation can be obtained by the method of
backward substitution. However, we simply check that the right-hand side
of equation (2.10) satisfies (2.9). For r = 0 we get (−1)n. Furthermore,

2a(r+1)
n = 2 · 1

2r+1

(
(−1)n +

r∑
k=0

2k

(
n+ k

k

))

= 1
2r

(
(−1)n +

r−1∑
k=0

2k

(
n+ k

k

)
+ 2r

(
n+ r

r

))

= 1
2r

(
(−1)n +

r−1∑
k=0

2k

(
n+ k

k

))
+
(
n+ r

r

)

= a(r)
n +

(
r + n

n

)
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by the symmetry property of the binomial coefficients. This proves the
formula (2.10).
By (2.4) and by the addition formula for binomial coefficients it follows that
for all r ≥ 0

b(r+1)
n =

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k+1(n− k)

=
n∑

k=0

(
r + k − 1

k

)
(−1)n−k+1(n− k)+

+
n∑

k=0

(
r + k − 1
k − 1

)
(−1)n−k+1(n− k),

where the first term on the right-hand side is by definition equal to b(r)
n , and

the second term for k instead of k − 1 is equal to
n∑

k=1

(
r + k − 1
k − 1

)
(−1)n−k+1(n− k) =

=
n−1∑
k=0

(
r + k

k

)
(−1)n−(k+1)+1(n− (k + 1))

= −
n−1∑
k=0

(
r + k

k

)
(−1)n−k+1(n− k) −

n−1∑
k=0

(
r + k

k

)
(−1)n−k.

The first sum on the right-hand side is by definition equal to

−
n−1∑
k=0

(
r + k

k

)
(−1)n−k+1(n−k) = −

n∑
k=0

(
r + k

k

)
(−1)n−k+1(n−k) = b(r+1)

n ,

whereas the second sum is equal to

−
n−1∑
k=0

(
r + k

k

)
(−1)n−k = −

n∑
k=0

(
r + k

k

)
(−1)n−k +

(
r + n

n

)

= −a(r+1)
n +

(
r + n

n

)
.

Hence, we obtain

b(r+1)
n = b(r)

n − b(r+1)
n − a(r+1)

n +
(
r + n

n

)

and solving for b(r+1)
n

2b(r+1)
n = b(r)

n − a(r+1)
n +

(
r + n

n

)
, (2.13)
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or, for r − 1 instead of r

2b(r)
n = b(r−1)

n − a(r)
n +

(
r − 1 + n

n

)
. (2.14)

Subtracting Equation (2.14) from the double of Equation (2.13) we obtain

4b(r+1)
n − 2b(r)

n = 2b(r)
n − b(r−1)

n − 2a(r+1)
n + a(r)

n + 2
(
r + n

n

)
−
(
r − 1 + n

n

)
.

Finally, solving for b(r+1)
n and using the recurrence relation (2.9) and the

addition formula for binomial coefficients, we obtain

4b(r+1)
n = 4b(r)

n − b(r−1)
n − a(r)

n −
(
r + n

n

)
+ a(r)

n + 2
(
r + n

n

)
−
(
r − 1 + n

n

)

= 4b(r)
n − b(r−1)

n +
(
r + n− 1
n− 1

)
.

This recurrence relation is linear and of second order and has the initial
values b(0)

n = (−1)n+1n and by Lemma (1.1) b(1)
n = cn = 1

4
(
1−(2n+1)(−1)n

)
.

This proves the assertion (2.11).
We now show that g(r, n) :=

∑n−1
k=0(−1)n−k+1a

(r)
k solves the re-

currence (2.11). First, we have g(0, n) =
∑n−1

k=0(−1)n−k+1a
(0)
k =∑n−1

k=0(−1)n−k+1(−1)k = (−1)n+1n and since by (2.10) a(1)
n =

∑n
k=0(−1)k =

1
2(1 + (−1)n) it follows that

g(1, n) =
n−1∑
k=0

(−1)n−k+1a
(1)
k = 1

2
(−1)n+1

n−1∑
k=0

(
(−1)k + 1

)
= 1

2
(−1)n+1

(1
2

(1 + (−1)n−1) + n

)
= 1

4
(
1 − (2n+ 1)(−1)n).

Consequently, g(r, n) satisfies the two initial conditions. Furthermore, by
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(2.9) and by the addition formula of the binomial coefficients, we have

4g(r + 1, n) − 4g(r, n) + g(r − 1, n) =

=
n−1∑
k=0

(−1)n−k+1(4a(r+1)
k − 4a(r)

k + a
(r−1)
k

)
=

n−1∑
k=0

(−1)n−k+1
(
2 ·
(
2a(r+1)

k − a
(r)
k

)
−
(
2a(r)

k − a
(r−1)
k

))

=
n−1∑
k=0

(−1)n−k+1
(

2
(
r + k

k

)
−
(
r − 1 + k

k

))

=
n−1∑
k=0

(−1)n−k+1
(
r + k

k

)
+

n−1∑
k=0

(−1)n−k+1
(
r + k − 1
k − 1

)

and the right-hand side is equal to
(r+n−1

n−1
)
, since with k instead of k − 1

the second sum can be expressed as follows:

n−1∑
k=0

(−1)n−k+1
(
r + k − 1
k − 1

)
=

n−2∑
k=0

(−1)n−k

(
r + k

k

)

= −
n−2∑
k=0

(−1)n−k+1
(
r + k

k

)
.

It follows that g(r, n) = b
(r)
n . Furthermore, by (2.10) it follows that

b(r)
n =

n−1∑
k=0

(−1)n−k+1a
(r)
k =

n−1∑
k=0

(−1)n−k+1 · 1
2r

(
(−1)k +

r−1∑
j=0

2j

(
k + j

j

))

= 1
2r

n−1∑
k=0

(−1)n+1 + 1
2r

n−1∑
k=0

(−1)n−k+1
r−1∑
j=0

2j

(
k + j

j

)

= (−1)n+1n

2r
+ (−1)n+1

2r

n−1∑
k=0

(−1)k
r−1∑
j=0

2j

(
k + j

j

)

= (−1)n+1

2r

(
n+

r−1∑
j=0

2j
( n−1∑

k=0
(−1)k

(
k + j

j

)))
,

and this proves (2.12).

Note that by (2.3) and (2.10) we have shown that for all r, n ∈ N0, we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k = 1

2r

(
(−1)n +

r−1∑
k=0

2k

(
n+ k

k

))
, (2.15)
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and by (2.4) and (2.12) we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k+1(n− k) =

= (−1)n+1

2r

(
n+

r−1∑
j=0

2j( n−1∑
k=0

(−1)k

(
k + j

j

)))
.

(2.16)

By (2.10) the first few values of a(r)
n for fixed r ≥ 0 are:

i) r = 0: a
(0)
n = (−1)n, (A033999)

ii) r = 1: a
(1)
n = 1

2
(
1 + (−1)n

)
, (A059841, characteristic function of

even numbers)

iii) r = 2: a
(2)
n = 1

4
(
1+(−1)n

)
+ 1

2(n+1), (A004526(n+1), nonnegative
integers repeated)

iv) r = 3: a
(3)
n = 1

8
(
1 + (−1)n

)
+ 1

4(n+ 1)(n+ 3), (A002620(n+ 2))

v) r = 4: a
(4)
n = 1

16
(
1 + (−1)n

)
+ 1

24(n+ 1)(n+ 3)(2n+ 7), (A002623)

vi) r = 5: a
(5)
n = 1

32
(
1 + (−1)n

)
+ 1

48(n+ 1)(n+ 3)2(n+ 5), (A001752).

In particular, setting r = 3 and n = 2m, m ∈ N0, in (2.15) gives the
sequence of the square numbers A000290(m+ 1)

2m∑
k=0

(
k + 2

2

)
(−1)k = (m+ 1)2,

while for n = 2m + 1, m ∈ N0, we get the sequence of the oblong numbers
A002378(m+ 1)

2m+1∑
k=0

(
k + 2

2

)
(−1)k−1 = (m+ 1)(m+ 2).

On the other hand, again by (2.10) the first few sequences of a(r)
n for fixed

n ≥ 0 are:

i) n = 0: a
(r)
0 = 1, (A000012, the all 1’s sequence)

ii) n = 1: a
(r)
1 = r − 1, (A023443)

iii) n = 2: a
(r)
2 = 1

2
(
r2 − r + 2

)
, (A152947)
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iv) n = 3: a
(r)
3 = 1

6
(
r3 + 5r − 6

)
, (A283551)

v) n = 4: a
(r)
4 = 1

24
(
r4 + 2r3 + 11r2 − 14r + 24

)
, (after removing the

first term this is the sequence A223718)

vi) n = 5: a
(r)
5 = 1

120
(
r5 +5r4 +25r3 −5r2 +94r−120

)
, (after removing

the first two terms, this is the sequence A257890).

Remark 2.6. A look at the polynomials n! · a(r)
n (for fixed n ≥ 0) shows

that their coefficients in descending powers of r are given by the triangle
as shown in Table 4. This table is up to the sign of the columns for odd
k given by the triangle A054651. By a slight modification of the formula
given in A054651, these coefficients U(n, k), n, k ∈ N0, are given by

U(n, k) = (−1)k
k∑

i=0

[
i+ n− k

n− k

]
n!

(i+ n− k)!
, (2.17)

where
[i+n−k

n−k

]
is an unsigned Stirling number of the first kind. Hence, by

(2.3) we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k = 1

n!

n∑
k=0

U(n, k)rn−k

=
n∑

k=0

(
(−1)k

k∑
i=0

[
i+ n− k

n− k

]
1

(i+ n− k)!

)
rn−k.

(2.18)

Note that U(n, n) = (−1)n · n! with the first few values
(1,−1, 2,−6, 24,−120, 720,−5040, . . .) (A133942) and that the sequence
of the row sums is S1(n) =

∑n
k=0 U(n, k) = 1+(−1)n

2 · n! (A005359) with
the first few values (1, 0, 2, 0, 24, 0, 720, 0, . . .), while the sequence of the
alternating row sums given by S2(n) =

∑n
k=0(−1)kU(n, k) with the first

few values (1, 2, 4, 12, 52, 250, 1608, 10808, . . .) is not in the OEIS.

By (2.12) the first few values of b(r)
n for fixed r ≥ 0 are:

i) r = 0: b
(0)
n = (−1)n+1n (A181983)

ii) r = 1: b
(1)
n = 1

4
(
1−(2n+1)(−1)n

)
(A001057, canonical enumeration

of integers)

iii) r = 2: b
(2)
n = 1

4(n+ 1)
(
1 − (−1)n

)
(A142150(n+ 1), the nonnegative

integers interleaved with 0’s)
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n\k 0 1 2 3 4 5 6 7
0 1
1 1 -1
2 1 -1 2
3 1 0 5 -6
4 1 2 11 -14 24
5 1 5 25 -5 94 -120
6 1 9 55 75 304 -444 720
7 1 14 112 350 1099 -364 3828 -5040

Table 9: Triangle U(n, k) of the coefficients (in descending powers of r) of
the polynomials n! · a(r)

n

iv) r = 3: b
(3)
n = 1

16
(
2n2 + 6n+ 3 − (2n+ 3)(−1)n

)
(removing the first

term this is the sequence A008805(n− 1), n ≥ 1, triangular numbers
repeated)

v) r = 4: b
(4)
n = 1

48
(
2n3 + 12n2 + 19n+ 6 − 3(n+ 2)(−1)n

)
(A006918)

vi) r = 5: b
(5)
n = 1

192
(
2n4 + 20n3 + 64n2 + 70n+ 15 − 3(2n+ 5)(−1)n

)
(removing the first term this is the sequence A002624(n− 1), n ≥ 1).

In particular, setting r = 3 and n = 2m, m ∈ N0, in (2.16) gives the
sequence of the triangular numbers A000217

2m∑
k=0

(
k + 2

2

)
(−1)k−1(2m− k) = 1

2
m(m+ 1) =

(
m+ 1

2

)
,

while for n = 2m + 1, m ∈ N0, we also get the sequence of the triangular
numbers A000217(m+ 1)

2m+1∑
k=0

(
k + 2

2

)
(−1)k−1(2m+ 1 − k) = 1

2
(m+ 1)(m+ 2) =

(
m+ 2

2

)
.

On the other hand, again by (2.12) the first few sequences of b(r)
n for fixed

n ≥ 0 are:

i) n = 0: b
(r)
0 = 0, (A000004, the zero sequence)

ii) n = 1: b
(r)
1 = 1, (A000012, the all 1’s sequence)

iii) n = 2: b
(r)
2 = r − 2, (A023444)
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n\k 0 1 2 3 4 5 6
0 0
1 1
2 1 -2
3 1 -3 6
4 1 -3 14 -24
5 1 -2 23 -70 120
6 1 0 35 -120 444 -720
7 1 3 55 -135 1024 -3108 5040

Table 10: Triangle V (n, k) of the coefficients (in descending powers of r) of
the polynomials (n− 1)! · b(r)

n .

iv) n = 3: b
(r)
3 = 1

2
(
r2 − 3r + 6

)
, (after removing the first term this is

the sequence A152948)

v) n = 4: b
(r)
4 = 1

6
(
r3 − 3r2 + 14r − 24

)
, (this sequence is not in the

OEIS)

vi) n = 5: b
(r)
5 = 1

24
(
r4 − 2r3 + 23r2 − 70r+ 120

)
, (this sequence is not

in the OEIS).

Remark 2.7. A look at the polynomials (n − 1)! · b(r)
n (for fixed n ≥ 0)

shows that their coefficients V (n, k), n, k ∈ N0, in descending powers of r
are given by the triangle as shown in Table 5. Note also that V (n, n− 1) =
(−1)n+1 · n!, n ≥ 1, (sequence A155456(n+2)) with the first few values
(1,−2, 6,−24, 120,−720, 5040, . . .) and that the sequence of the row sums is
T1(n) =

∑n−1
k=0 V (n, k) = (−1)n+1n! · 2n+3

4 , n ≥ 1, (after removing the first
term, the unsigned sequence |T1(n)| is A052558) with the first few values
(0, 1,−1, 4,−12, 72,−360, 2880, . . .), while the sequence of the alternating
row sums given by T2(n) =

∑n−1
k=0(−1)kV (n, k) with the first few values

(0, 1, 3, 10, 42, 216, 1320, 9366, . . .) is not in the OEIS.

3 Generating functions and two special subse-
quences

We now determine the ordinary generating functions for
(
a

(r)
n
)

n∈N0
and(

b
(r)
n
)

n∈N0
, denoted by Fr(s) and Gr(s), respectively. We recall that the

ordinary generating function for the sequence (fn)n∈N0 is defined as the
(formal) power series ∑∞

n=0 fns
n.
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Proposition 3.1. The ordinary generating function for a(r)
n is given by

Fr(s) = 1
1 + s

· 1
(1 − s)r

, (3.1)

and that for b(r)
n is given by

Gr(s) = s

(1 + s)2 · 1
(1 − s)r

= s

1 + s
· Fr(s). (3.2)

Proof. By definition and by [2, Equation (7.21)], we have for all r ≥ 1:

Fr(s) =
∞∑

n=0
a(r)

n sn =
∞∑

n=0

( n∑
k=0

a
(r−1)
k

)
sn = 1

1 − s
Fr−1(s).

The solution of this recurrence relation is given by Fr(s) = F0(s) · 1
(1−s)r .

Since the generating function F0(s) for an = (−1)n is given by the geometric
series F0(s) =

∑∞
n=0(−1)nsn = 1

1−(−s) = 1
1+s , the assertion (3.1) is proved.

Similarly, by definition and by [2, Equation (7.21)], we have for all r ≥ 1:

Gr(s) =
∞∑

n=0
b(r)

n sn =
∞∑

n=0

( n∑
k=0

b
(r−1)
k

)
sn = 1

1 − s
Gr−1(s)

which has the solution Gr(s) = G0(s)· 1
(1−s)r . The generating function G0(s)

for bn = (−1)n+1n can be determined in the following way

G0(s) =
∞∑

n=0
(−1)n+1nsn =

∞∑
n=0

(−1)n+1(n+ 1 − 1)sn

= 1
s

∞∑
n=0

(−1)n+1(n+ 1)sn+1 −
∞∑

n=0
(−1)n+1sn

= 1
s

∞∑
n=0

(−1)nnsn +
∞∑

n=0
(−1)nsn = 1

s
G0(s) + 1

1 + s
.

Solving for G0(s), we get the formula (3.2).

Finally, we consider the two subsequences (dn)n∈N0 and (en)n∈N0 , defined as
dn := a

(n)
n and en := b

(n)
n , n ≥ 0, which form the main diagonal of the arrays(

a
(r)
n
)

and
(
b

(r)
n
)
, respectively (see Table 2 and Table 3). We recall that

(C(n))n∈N0 is the sequence of the Catalan numbers, the sequence A000108,
defined by C(n) := 1

n+1
(2n

n

)
, n ≥ 0.
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Proposition 3.2. The sequences (dn)n∈N0 and (en)n∈N0 satisfy the recur-
rences

d0 = 1, 2dn+1 = −dn + (3n+ 1)C(n), n ≥ 0, (3.3)

and

e0 = 0, e1 = 1, 4en+1 + 4en + en−1 = (9n− 5)C(n− 1), n ≥ 1. (3.4)

The solutions are dn =
∑n

k=0
(n+k−1

k

)
(−1)n−k and en =∑n

k=0
(n+k−1

k

)
(−1)n−k+1(n− k), n ≥ 0.

Proof. By definition, we have d0 = a
(0)
0 = 1. By (2.7) for r = n+1 it follows

that
dn+1 = a

(n+1)
n+1 = −a(n+1)

n +
(

2n+ 1
n+ 1

)
. (3.5)

Furthermore, by (2.9) for r = n, we have

2a(n+1)
n = a(n)

n +
(

2n
n

)
= dn +

(
2n
n

)
.

Hence, substituting this equation into (3.5) multiplied by 2, we get

2dn+1 = −2a(n+1)
n + 2

(
2n+ 1
n+ 1

)
= −dn −

(
2n
n

)
+ 2

(
2n+ 1
n

)
,

and this is the recurrence (3.3), since 2
(2n+1

n

)
−
(2n

n

)
=
(2n

n

)
(22n+1

n+1 − 1) =
3n+1
n+1

(2n
n

)
= (3n + 1)C(n). The solution of the recurrence (3.3) is given by

(2.3) for r = n.
By definition, we have e0 = b

(0)
0 = 0 and e1 = b

(1)
1 = 1. For r = n + 1, we

get from (2.8)

en+1 = b
(n+1)
n+1 = −2b(n+1)

n − b
(n+1)
n−1 +

(
2n
n

)
, n ≥ 1. (3.6)

For r = n, we get from (2.11)

4b(n+1)
n = 4b(n)

n −b(n−1)
n +

(
2n− 1
n− 1

)
= 4en−b(n−1)

n + 1
2

(
2n
n

)
, n ≥ 1, (3.7)

and for r = n and n− 1 instead of n

4b(n+1)
n−1 = 4b(n)

n−1 − b
(n−1)
n−1 +

(
2n− 2
n− 2

)
= 4b(n)

n−1 − en−1 +
(

2n− 2
n

)
, n ≥ 1.

(3.8)

83



D. Parisse

Furthermore, by definition of the hypersequence, we have

en = b(n)
n = b

(n)
n−1 + b(n−1)

n , n ≥ 1, (3.9)

and
b(n+1)

n = b
(n+1)
n−1 + b(n)

n = b
(n+1)
n−1 + en, n ≥ 1. (3.10)

Setting b
(n)
n−1 = α, b

(n+1)
n−1 = β, b

(n−1)
n = γ, and b

(n+1)
n = δ, we obtain from

(3.6), (3.7), (3.8), (3.9) and (3.10) the following linear system consisting of
5 equations for the 4 unknowns α, β, γ, and δ.

en+1 = −2δ − β +
(

2n
n

)

4δ = 4en − γ + 1
2

(
2n
n

)

4β = 4α− en−1 +
(

2n− 2
n

)
en = α+ γ

δ = β + en.

After algebraic elimination of the values α, β, γ, δ, the equation 4en+1 +
4en + en−1 = 2

(2n
n

)
+
(2n−2

n

)
remains, which is (3.4), since 2

(2n
n

)
+
(2n−2

n

)
=

(2n−2)!
(n−1)!(n−1)! ·

(
2 (2n−1)2n

n·n + n−1
n

)
=
(2(n−1)

n−1
)9n−5

n = (9n− 5)C(n− 1), n ≥ 1.
The solution of the recurrence (3.4) is given by (2.4) for r = n.

The sequence (dn)n∈N0 with the first few values
(1, 0, 2, 6, 22, 80, 296, 1106, . . .) is the sequence A072547, while the se-
quence (en)n∈N0 with the first few values (0, 1, 0, 3, 8, 30, 108, 399, . . .) is not
in the OEIS.
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Abstract
A normal 5-edge-coloring of a cubic graph is a coloring such that for
every edge, the number of distinct colors incident to its end-vertices
is 3 or 5 (and not 4). The well-known Petersen Coloring Conjec-
ture is equivalent to the statement that every bridgeless cubic graph
has a normal 5-edge-coloring. All 3-edge-colorings of a cubic graph
are obviously normal, so in order to establish the conjecture, it is
sufficient to consider only snarks. The most general known method
for constructing snarks is superposition. In this paper, we give an
overview of our results on the normal 5-edge-colorings of superposi-
tioned snarks. A family of superpositioned snarks considered here is
obtained from a snark G by superpositioning vertices and edges along
a cycle C of G by two specific supervertices and by superedges of the
form Hx,y, where H is any snark and x, y a pair of non-adjacent ver-
tices in H. We assume that a snark G has a normal 5-edge-coloring
σ and we extend σ to a superpositioned snark G̃. Our consideration
starts with superpositions by the Petersen graph P10, where we en-
counter problems with superpositions along odd cycles. We provide
an example of a superposition by P10 along an odd cycle C in which
σ cannot be extended to a superposition. This does not contradict
the Petersen coloring conjecture, since the superposition does have
a normal 5-edge-coloring, but not such that it is an extension of σ.
We generalize our approach to superpositions by any superedge Hx,y,
where d(x, y) ≥ 3. For such superpositions, we give two sufficient con-
ditions under which σ can be extended to a superposition. These
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conditions are applied to superpositions by Hypohamiltonian snarks
and by Flower snarks, showing thus that some of the former and all
of the latter have a normal 5-edge-colorings. Since the Petersen Col-
oring Conjecture implies some other well-known classical conjectures
like the Ford-Fulkerson Conjecture, these results immediately yield
some known results on this conjecture.

Keywords: normal edge-coloring; cubic graph; snark; superposition; Pe-
tersen Coloring Conjecture.
2020 Mathematics Subject Classification: 05C15.

1 Introduction
A k-edge-coloring of a graph G is a function σ : E(G) → {1, . . . , k}. If an
edge-coloring assigns distinct colors to any two adjacent edges in G, it is said
to be proper. Throughout the paper, we will omit the word ’proper’ tacitly
assuming properness unless explicitly stated otherwise. For any vertex v ∈
V (G), the set of colors associated with the edges incident to v is denoted
by σ(v).

Definition 1.1. Consider a bridgeless cubic graphG, a proper edge-coloring
σ, and an edge uv ∈ E(G). The edge uv is defined as poor if |σ(u) ∪ σ(v)| =
3, and as rich if |σ(u) ∪ σ(v)| = 5.

An edge-coloring of a cubic graph G is said to be a normal edge-coloring
if all edges of G are either poor or rich. This concept was first introduced
by Jaeger in [10]. The normal chromatic index of G, written as χ′

N (G), is
the minimum value of k for which a normal k-edge-coloring exists. Notably,
χ′

N (G) is always at least 3, and it can never equal 4.
The Petersen Coloring Conjecture is one of the most prominent open prob-
lems in graph theory. This conjecture is particularly challenging to prove, as
it has been shown to imply several other well-known conjectures, including
the Berge-Fulkerson Conjecture and the (5,2)-cycle-cover Conjecture. In-
terestingly, the Petersen Coloring Conjecture can be reformulated in terms
of normal edge-colorings, as noted in [10].

Conjecture 1.2. If G is a bridgeless cubic graph, then χ′
N (G) ≤ 5.

It is evident that Conjecture 1.2 holds for every cubic graph G that admits
a proper 3-edge-coloring, as such a coloring is a normal edge-coloring where
all edges are poor. By Vizing’s theorem, every cubic graph is either 3-
edge-colorable or 4-edge-colorable. Therefore, to confirm Conjecture 1.2, it
suffices to show that it applies to all bridgeless cubic graphs that are not
3-edge-colorable.
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Superpositioning snarks. Cubic graphs that are not 3-edge-colorable
are commonly referred to as snarks [5, 21]. To exclude trivial cases, the
definition of a snark often includes additional conditions related to connec-
tivity. However, these conditions are not crucial for the purposes of this
paper. Hence, we adopt a broader definition, considering a snark to be
any bridgeless cubic graph that is not 3-edge-colorable. Some families of
snarks have already been shown to admit normal 5-edge-colorings; see, for
instance, [4, 7].
The most general method currently known for generating new snarks from
existing ones is the process of superposition [1, 3, 11, 12, 16]. Since this
paper explores certain snarks created through superposition, we begin by
introducing the method.

Definition 1.3. A multipole M = (V,E, S) is defined by a set of vertices
V = V (M), a set of edges E = E(M), and a set of semiedges S = S(M).
A semiedge is either incident to a single vertex or paired with another
semiedge, forming what is known as an isolated edge within the multipole.

A : A′ :

Figure 1: Supervertices A and A′, with connectors S1, S2, and S3, where
S1 is a 1-connector, and S2 and S3 are 3-connectors.

An example of a multipole can be found in Figure 1. For any vertex v in a
multipole M , the degree dM (v) is defined as the total number of edges and
semiedges in M that are incident to v. A multipole M is termed cubic if
every vertex of M has degree 3. For instance, both multipoles depicted in
Figure 1 are cubic. Throughout this paper, we focus exclusively on cubic
multipoles.
Now, let us introduce some terminology related to the semiedges of a mul-
tipole M . A multipole M is referred to as a k-pole when the total number
of semiedges, |S(M)|, equals k. If the set of semiedges S is divided into n
subsets Si such that |Si| = ki, the multipole is called a (k1, . . . , kn)-pole and
is denoted as M = (V,E, S1, . . . , Sn). These subsets Si are referred to as
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the connectors of M . A connector Si containing ki semiedges is specifically
called a ki-connector.

Definition 1.4. A supervertex (respectively, a superedge) is defined as a
cubic multipole with three (respectively, two) connectors.

We specifically define the supervertices A and A′ as shown in Figure 1.
These two supervertices will be the focus of our analysis throughout the
paper. Next, we introduce a particular type of superedge relevant to our
discussion. Let G be a snark, and let u and v be two non-adjacent vertices
in G. The superedge Gu,v is constructed by removing the vertices u and v
from G, and replacing the three edges incident to u (and similarly for v)
with three semiedges in Gu,v, which collectively form a connector.

Definition 1.5. A proper superedge is defined as either an isolated edge or
a superedge Gu,v where G is a snark.

While the definition of a proper superedge given in [11] is much broader, the
simplified definition presented here is sufficient for the scope of this paper.
In our work, we will also explore normal edge-colorings of multipoles, as the
concept of normal edge-coloring extends naturally to these structures. Let
us now formalize this notion.
For a multipole M = (V,E, S), a (proper) k-edge-coloring is defined as a
function σ : E(M)∪E(S) → {1, . . . , k} such that no two edges or semiedges
sharing the same color are incident to the same vertex. Furthermore, a
normal edge-coloring of a multipole is a proper edge-coloring where every
edge is either rich or poor. It is important to note that this definition places
no restrictions on the coloring of semiedges.
For a cubic graph G = (V,E), we define two functions: V, which maps each
vertex v ∈ V to a supervertex V(v), and E , which maps each edge e ∈ E to a
superedge E(e). A superposition G(V, E) is constructed under the following
condition: semiedges of a connector in V(v) are matched with semiedges
of a connector in E(e) if and only if e is incident to v in G. Naturally,
this requires the connectors in V(v) and E(e) to have the same number of
semiedges.
Observe that the resulting graph G(V, E) is again cubic. Such a superposi-
tion is said to be proper if every superedge E(e) is proper. Additionally, we
assume that some vertices and edges of G may be superpositioned by them-
selves. Formally, such vertices are superpositioned by trivial supervertices
consisting of a single vertex with three incident semiedges, and such edges
by trivial superedges consisting of a single isolated edge.
The following theorem, as established in [11], applies to snarks of girth ≥ 5
that are cyclically 4-edge connected. However, it is worth noting that the
result remains valid for snarks with smaller girths as well.
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Theorem 1.6. For a snark G, any proper superposition G(V, E) is also a
snark.

Normal colorings of superpositioned snarks. Normal 5-edge-
colorings for certain families of superpositioned snarks are analyzed in the
series of papers [24–26]. All three papers consider snarks obtained from a
snark G by superpositioning the vertices and edges of a cycle C of G by
supervertices A or A′ and by superedges of the form Hx,y where H is any
snark and x, y a pair of nonadjacent vertices of H. In all three papers, the
same approach is used, where it is assumed that G does have a normal
5-edge-coloring σ and this coloring is then extended to a superposition. Pa-
pers [24] and [26] investigate the case when H = P10 for every edge of a
cycle C. With such a superposition, the problem with the construction of a
normal 5-edge-colorings arises when C is an odd-length cycle.
It is established that the problem is not inherent to the approach, as the
example of a snark G and its superposition is provided, where the super-
position does not have a normal 5-edge-coloring, which is an extension of
the coloring of G. Instead, the problem arises due to H = P10 being a small
snark of the diameter only two. Hence, in [25] the approach is extended
to a superopsition by any snark H and any pair of vertices x, y of H with
d(x, y) ≥ 3. Here, two sufficient conditions are given under which a superpo-
sition does have a normal 5-edge-coloring are given, the first one is applied
to some superpositions by Hypohamiltonian snarks and the other to all su-
perpositions by Flower snarks, showing thus that all these superpositions
have a normal 5-edge-coloring, thus the Petersen Coloring Conjecture is
verified for them. Since the Petersen Coloring Conjecture implies the Ford-
Fulkerson Conjecture, these results immediately yield the results of [14]. In
this paper, we give an overview of all these results.

2 Preliminaries
Let G be a snark, and let C = u0u1 · · ·ug−1u0 represent a cycle of length g in
G. The edges of the cycle C are denoted as ei = uiui+1 for i = 0, . . . , g− 1,
where indices are taken modulo g. Additionally, let vi denote the neighbor
of ui that is distinct from ui−1 and ui+1, and define fi = uivi.
The supervertices A and A′ are defined as shown in Figure 1. For su-
peredges, we use Hx,y, where H is a snark and x, y are two non-adjacent
vertices of H. Observe that Hx,y contains a pair of 3-connectors, denoted
Sx and Sy. These connectors consist of the three semiedges that correspond
to halves of the three edges in H incident to x and y, respectively. We now
formally define the type of superpositions considered in this paper.
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Figure 2: A schematic representation of a superedge Bi in a superposition
GC(A,B), showing its left and right connectors along with their semiedges.
This representation will be assumed throughout the paper.

Definition 2.1. Let C = u0u1 · · ·ug−1u0 be a cycle in a snark G, and let
ei = uiui+1 represent an edge of C for i = 0, . . . , g − 1. A superpositioned
snark GC(A,B) is a superposition of G such that:

• For every vertex ui of C, A(ui) ∈ {A,A′}.

• For every edge ei of C, B(ei) ∈ {Hx,y : H is a snark and x, y are
non-adjacent vertices of H}.

All other vertices and edges of G are superpositioned by themselves.

Note that the snark H used to construct a superedge Bi does not need
to be the same for different edges of the cycle C. The family of all such
superpositions is denoted by GC(A,B). For simplicity, we will write Ai

instead of A(ui) and Bi instead of B(ei).
In a superedge Bi, the connector that is matched with a connector of Ai

will be referred to as the left connector and denoted by Sl, while the con-
nector matched with Ai+1 will be called the right connector and denoted by
Sr. The three semiedges belonging to the left connector are called the left
semiedges, labeled as sl

1, sl
2, and sl

3. Similarly, the semiedges of the right
connector are the right semiedges, denoted as sr

1, sr
2, and sr

3. Figure 2 illus-
trates the schematic structure of a superedge that will be used consistently
throughout this paper.
When a superedge Bi is derived from a snark H by removing two non-
adjacent vertices x and y, it is written as Bi = Hx,y if the left connector
corresponds to Sx, and as Bi = Hy,x if the left connector corresponds to Sy.
It is useful to assume that the connection between a supervertex Ai and the
superedges Bi−1 and Bi is established as follows: first, the right semiedges of
Bi−1 are matched with the left semiedges of Bi. Then, one of the resulting
edges is subdivided to create the vertex ui of Ai. Since the identification of
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Figure 3: This figure demonstrates how a superedge Bi is connected to its
neighboring superedges Bi−1 and Bi+1, based on a permutation pi and a
dock di associated with Bi. In this example, pi = (1, 3, 2) and di = 2. The
figure also reveals that pi−1 = (2, 3, 1) and di+1 = 3.

semiedges between Bi−1 and Bi can occur in multiple ways, as illustrated
in Figure 3, we associate a permutation pi−1 of the set {1, 2, 3} with the
superedge Bi−1. This permutation specifies how the right semiedges sr

1,
sr

2, sr
3 of Bi−1 are reordered before being matched with the left semiedges

sl
1, sl

2, sl
3 of Bi. Specifically, the semiedge sr

p−1
i−1(j) of Bi−1 is matched with

the semiedge sl
j of Bi. The permutation pi−1 is referred to as a semiedge

permutation.
For instance, in Figure 3, the semiedge permutations are pi−1 = (2, 3, 1) and
pi = (1, 3, 2). When the specific permutation pi−1 is clear from the context,
we will write p−1

i−1(j) simply as j− for brevity.
Suppose that the edge created by semiedge identification is denoted by
sr

j−sl
j . Among these edges, one j ∈ {1, 2, 3} is selected as the index of

the edge to be subdivided to form the vertex ui. Since j corresponds to a
left semiedge in Bi, this choice is represented by j = di and is associated with
Bi. The value di, which determines the left semiedge of Bi to be connected
to the vertex ui of Ai, is called the dock index, and the semiedge sl

di
is

referred to as the dock semiedge. For example, in Figure 3, the dock indices
are di = 2 and di+1 = 3.
To summarize, each superedge Bi is associated with a permutation pi, which
determines how the right semiedges of Bi connect to the left semiedges of
Bi+1, and a dock index di, which specifies which left semiedge of Bi connects
to the vertex ui of Ai.

Submultipoles and their compatible colorings. We now focus on
normal 5-edge-colorings of a superposition GC(A,B). To proceed, we first
introduce the concepts of a submultipole and the restriction of a coloring to
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a submultipole.
Let M = (V,E, S) be a multipole. A multipole M ′ = (V ′, E′, S′) is called
a submultipole of M if V ′ ⊆ V , E′ ⊆ E, and S′ ⊆ S ∪ ES , where ES

represents the set of halves of edges in E. For a subset V ′ ⊆ V , a multipole
M ′ = M [V ′] is called an induced submultipole of M if:

• The vertex set is V ′.

• The edge set E′ includes all edges e ∈ E where both endpoints belong
to V ′.

• The semiedge set S′ includes all semiedges in M with endpoints in V ′,
along with the halves of edges in E that have exactly one endpoint in
V ′.

Now, let σ be a normal 5-edge-coloring of a cubic multipole M . The restric-
tion of σ to a submultipole M ′, denoted σ′ = σ|M ′ , is defined as follows:

• For each edge e ∈ E′, σ′(e) = σ(e).

• For each semiedge s ∈ S′ ∩ S, σ′(s) = σ(s).

• For each semiedge s ∈ S′ \ S, σ′(s) = σ(es), where es is the edge in
M whose semiedge is s.

Finally, let M1, . . . ,Mk be cubic submultipoles of a cubic multipole M , and
let σi be a normal 5-edge-coloring of Mi for i = 1, . . . , k. Let M ′ denote
the submultipole of M induced by the union of vertices ∪k

i=1V (Mi). The
colorings σi are said to be compatible if there exists a normal 5-edge-coloring
σ′ of M ′ such that σ′|Mi

= σi for every i = 1, . . . , k.

Our approach to the coloring of a superposition Throughout the
paper, we assume that a snark G has a normal 5-edge-coloring σ, and we
wish to extend this coloring to a superposition G̃ ∈ GC(A,B). To be more
precise, let C be a cycle inG and denote byMint a submultipole ofG induced
by V (G)\V (C). By σ̃int we denote the restriction of σ to the submultipole
Mint. Notice that Mint is a submultipole of the superposition G̃ also. We
aim to construct a normal 5-edge coloring σ̃ of a superposition G̃ such that
the restriction of σ̃ to Mint equals σ̃int. We achieve this by constructing a
normal 5-edge-coloring σ̃i of each superedge Bi with particular properties
which assure that σ̃i−1, σ̃i and σ̃int are compatible in G̃ for every i. This
will directly imply the compatibility of all σ̃i and σ̃int, i.e. the existance of
a normal 5-edge-coloring of G̃.
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3 Superposition by the Petersen graph
The Petersen graph, being the smallest snark, serves as a natural starting
point for our study of superpositions where superedges are derived from this
graph. Specifically, in this section, we consider the superpositions defined
in Definition 2.1, where H = P10 for each edge ei ∈ E(C), i.e., Bi = (P10)u,v

for all i = 0, . . . , g − 1.

Figure 4: A normal 5-edge-coloring σ of the edges in G incident to the
vertices ui−1 and ui.

Figure 5: A normal 5-edge-coloring of Bi that is both right-side σ-
monochromatic and left-side σ-compatible, assuming di = 2.

To proceed, we first define the concept of the color scheme of a semiedge.
For a semiedge s in a cubic multipole M , the color scheme σ[s] is given by
σ[s] = (i, {j, k}), where i is the color of s and {j, k} is the set of the two
colors on the (semi)edges adjacent to s. Now, let s′ be another semiedge in
a multipole with the color scheme σ[s′] = (i′, {j′, k′}). The color schemes
σ[s] and σ[s′] are said to be consistent, denoted by σ[s] ≈ σ[s′], if i′ = i
and either {j′, k′} = {j, k} or {j′, k′} ∩ {i, j, k} = ∅. If the color schemes
σ[s] and σ[s′] are consistent, then identifying the semiedges s and s′ when
”gluing” two multipoles results in either a poor or rich edge.
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Next, we define a specific type of coloring for superedges used in our
construction. A normal 5-edge-coloring σ̃i of Bi is called right-side
σ-monochromatic if for every j ∈ {1, 2, 3}, the condition σ̃i[sr

j ] ≈
(σ(ei), {σ(ei−1), σ(fi)}) holds. For instance, if the edge-coloring σ of G
around vertex ui is as shown in Figure 4, then the coloring of Bi depicted
in Figure 5 is an example of a right-side σ-monochromatic coloring of Bi.
A normal 5-edge-coloring σ̃i of Bi is said to be left-side σ-compatible if the
following conditions are satisfied:

• σ̃i[sl
di

] ≈ (σ(ei), {σ(ei−1), σ(fi)}),

• σ̃i[sl
j ] ≈ (σ(ei−1), {σ(ei), σ(fi)}) for every j ∈ {1, 2, 3} \ {di}, and

• there exists a Kempe (σ(ei−1), σ(fi))-chain P l that connects the two
left semiedges sl

j where j 6= di.

To illustrate this concept, assume the edge-coloring σ of G is as shown in
Figure 4. If di = 2, then the coloring of Bi depicted in Figure 5 is an example
of a left-side σ-compatible coloring of Bi.

Remark 3.1. Let σ̃i−1 be a right-side σ-monochromatic coloring of Bi−1,
σ̃i a left-side σ-compatible coloring of Bi, and σ̃int the restriction of σ to
Mint. The following holds:

• If A = A, then σ̃i−1, σ̃i, and σ̃int are compatible, meaning they com-
bine seamlessly.

• If A = A′, compatibility still holds, but σ̃i must be replaced by a
modified coloring σ̃′

i, which is obtained by swapping colors along the
Kempe chain P l.

Therefore, if every superedge Bi admits a normal 5-edge-coloring that is
simultaneously right-side σ-monochromatic and left-side σ-compatible, a
normal 5-edge-coloring of the entire superposition can be achieved. How-
ever, when di = 1, such a coloring of Bi would result in the semiedges sl

1
and sr

1 having the same color. Since these semiedges are incident to the
same vertex, this would violate the condition of a proper coloring. Thus,
we conclude the following.

Observation 3.2. A superedge Bi cannot admit a normal 5-edge-coloring
that is simultaneously right-side σ-monochromatic and left-side σ-compatible
in the case where di = 1.
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a) b)

Figure 6: Given a coloring σ of G as shown in Figure 4, this figure illustrates
σ-compatible colorings: σ̃i−1, which is left-side σ-compatible, and σ̃i, which
is right-side σ-monochromatic. The two cases shown are: a) Ai = A and b)
Ai = A′, both with di−1 = di = 1.

To address this issue, we group certain pairs of consecutive superedges into
larger ”chunks.” By doing so, it becomes possible to ensure that these larger
chunks are both right-side σ-monochromatic and left-side σ-compatible.
This concept is illustrated in Figures 6 and 7. Using this strategy, we can
demonstrate that when di 6= 1 for at least one superedge Bi, the superedges
of the superposition GC(A,B) can be partitioned into a combination of
single superedges and pairs of consecutive superedges, such that:

• A single superedge is assigned a normal 5-edge-coloring that is both
right-side σ-monochromatic and left-side σ-compatible, as shown in
Figure 5.

• A pair of consecutive superedges forms a larger chunk that is colored to
be right-side σ-monochromatic and left-side σ-compatible, as depicted
in Figures 6 and 7.

With additional refinements, this approach leads to the following result:

Theorem 3.3. [26] Let G be a snark, σ a normal 5-edge-coloring of G, C
a cycle of length g in G, and G̃ ∈ GC(A,B) a superposition of G. If there
exists at least one i ∈ {0, . . . , g − 1} such that pi(1) 6= 1 or di 6= 1, then G̃
admits a normal 5-edge-coloring σ̃ with at least 18 poor edges.

On the other hand, if di = 1 for every superedge Bi, the above approach
succeeds only when C is an even-length cycle. This limitation arises because
an odd number of superedges cannot be grouped into pairs for coloring as
shown in Figure 6, and a single superedge Bi with di = 1 cannot have
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a)

b)

c)

d)

e)

f)

Figure 7: For the normal 5-edge-coloring σ of G shown in Figure 4, this
figure illustrates normal 5-edge-colorings of Bi−1 and Bi that are compatible
with σ. The left column corresponds to Ai = A, and the right column
corresponds to Ai = A′. These configurations are shown for di = 2 and the
following permutations pi−1: a) (1, 2, 3), b) (1, 3, 2), c) (2, 1, 3), d) (2, 3, 1),
e) (3, 1, 2), and f) (3, 2, 1).
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a normal 5-edge-coloring that is both right-side σ-monochromatic and left-
side σ-compatible, as stated in Observation 3.2. Consequently, in such cases,
the following theorem provides the best result achievable by our approach:

Theorem 3.4. [24] Let G be a snark, σ a normal 5-edge-coloring of G,
C a cycle of length g in G, and G̃ ∈ GC(A,B) a superposition of G. If
pi = (1, 2, 3) and di = 1 for every i ∈ {0, . . . , g − 1}, then for even g, there
exists a normal 5-edge-coloring σ̃ of G̃ with at least 18 poor edges.

Next, we consider the case of a superposition along an odd-length cycle C
in a snark G, where pi = (1, 2, 3) and di = 1 for every superedge Bi. The
question arises whether it is generally impossible to extend a normal 5-edge-
coloring of G to such a superposition G̃, or if this limitation is specific to
our approach. To explore this, we analyze the Petersen graph G = P10.
The Petersen graph G, being vertex-transitive, has (up to isomorphism) a
single normal 5-edge-coloring, in which every edge is rich. It can be verified
computationally that the following holds:

Observation 3.5. [24] Let G be the Petersen graph and C a cycle of length
5 in G. Consider the superposition GC(A,B) of G such that Ai = A and
Bi = (P10)u,v with pi = (1, 2, 3) and di = 1 for all i ∈ {0, . . . , 4}. It is
not possible to extend the normal 5-edge-coloring of G to the superposition
GC(A,B) without altering the colors of edges in G outside C.

It is important to note that the above observation does not contradict the
Petersen Coloring Conjecture. The superposition GC(A,B) does admit a
normal 5-edge-coloring; however, this coloring cannot be obtained as an
extension of the normal 5-edge-coloring of G = P10. In other words, while
the superposition can be colored normally, doing so requires changing the
colors of edges in G outside the cycle C.

4 Superposition by any snark
In the approach discussed in the previous section, a problem arises when the
Petersen graph P10 is used as a superedge due to its diameter being two.
This implies that any two vertices in P10 are at a distance of at most 2.
Consequently, for at least one choice of the dock di, an edge of the snark G
belonging to the cycle C is replaced in the superposition by a path of length
two. It is evident that such a path cannot be assigned the same color as the
corresponding edge in C without violating the properness of the coloring.
To address this issue, we use larger snarks as superedges and restrict atten-
tion to pairs of vertices u, v in these snarks such that d(u, v) ≥ 3. In other
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Figure 8: A coloring σ of the edges incident to a vertex ui of the cycle C in
G. For this coloring σ, all colorings of Bi consistent with the color schemes
shown in Figure 9 are σ-compatible.

a) b) c)

Figure 9: The color scheme κj for: a) j = 1, b) j = 2, c) j = 3. The dashed
curve represents the Kempe chain P l.

words, we focus on superedges of the form Hu,v, where H is a snark with a
diameter of at least three, and u, v are vertices in H satisfying d(u, v) ≥ 3.
To generalize the approach from the previous section for any snark used
as a superedge, we extend the notion of (consistent) color schemes from
semiedges to connectors and superedges. Let G̃ ∈ GC(A,B) be a superpo-
sition of G, Bi a superedge of G̃, and σ̃i a 5-edge-coloring of Bi. The color
scheme of the left and right connector of Bi is defined as follows:

σ̃i[Sl] = (σ̃i[sl
1], σ̃i[sl

2], σ̃i[sl
3]) and σ̃i[Sr] = (σ̃i[sr

1], σ̃i[sr
2], σ̃i[sr

3]),

respectively. The color scheme of a superedge Bi is then defined as:

σ̃i[Bi] = (σ̃i[Sl], σ̃i[Sr]),

and is illustrated in Figure 8.
Let Bi be a superedge of GC(A,B), and let σ̃i and σ̃′

i be two normal 5-edge-
colorings of Bi. The colorings σ̃i and σ̃′

i are consistent on the left connector
Sl of Bi, denoted by σ̃i[Sl] ≈ σ̃′

i[Sl], if:

σ̃i[sl
j ] ≈ σ̃′

i[sl
j ] for all j = 1, 2, 3.

The consistency of σ̃i and σ̃′
i on the right connector Sr of Bi is defined

analogously. Finally, the colorings σ̃i and σ̃′
i are said to be consistent on Bi,
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denoted by σ̃i[Bi] ≈ σ̃′
i[Bi], if they are consistent on both the left and right

connectors. When this condition holds, we also say that the color schemes
σ̃i[Bi] and σ̃′

i[Bi] are consistent.

4.1 Right colorings
A normal 5-edge-coloring of Bi is called j-right if it is consistent with the
color scheme κj from Figure 9 and there exists a Kempe (2, 1)-chain P l

connecting the pair of left semiedges distinct from sl
j . A superedge Bi is

classified as follows:

• Dock-right: If it is j-right for j = di.

• Doubly-right: If it is j-right for at least two distinct values of j.

• Fully-right: If it is j-right for all j ∈ {1, 2, 3}.

A j-right coloring of Bi is σ-compatible with the coloring σ of the cycle C
in G, as shown in Figure 8, provided that the dock of Bi is di = j. For any
other coloring σ of G, a σ-compatible coloring of Bi can be derived from
a j-right coloring by applying a color permutation and/or swapping colors
along P l. Additionally, a j-right coloring of Bi is compatible with j-right
colorings of Bi−1 and Bi+1, provided all these colorings are σ-compatible.
Based on this, we establish the following theorem:

Theorem 4.1. [25] Let G be a snark with a normal 5-edge-coloring σ, C
a cycle of length g in G, and G̃ ∈ GC(A,B) a superposition of G. If every
superedge Bi is dock-right for i = 0, . . . , g − 1, then G̃ admits a normal
5-edge-coloring.

As an immediate consequence of Theorem 4.1, we obtain the following corol-
lary:

Corollary 4.2. [25] Let G be a snark with a normal 5-edge-coloring σ,
C a cycle of length g in G, and G̃ ∈ GC(A,B) a superposition of G. If
every superedge Bi is fully-right for i = 0, . . . , g−1, then G̃ admits a normal
5-edge-coloring.

The sufficient conditions outlined in Theorem 4.1 and Corollary 4.2 hold
for any snark H used as a superedge and for any pair of vertices u, v in
H such that d(u, v) ≥ 3. To demonstrate the broad applicability of these
conditions, in the next subsection we describe a large family of snarks H
for which these conditions are satisfied.
Before proceeding, we note that the extension of a coloring σ of a snark G
to a superposition G̃ can be performed independently along multiple vertex-
disjoint cycles. Recall that an even subgraph of a graph G is a subgraph
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where every vertex has an even degree. Based on this, we state the following
formal remark:

Remark 4.3. Theorem 4.1 remains valid when C is an even subgraph of
G.

4.2 Right colorings and hypohamiltonian snarks
We now demonstrate that the condition in Theorem 4.1 holds for hypo-
hamiltonian snarks. A graph H is said to be hypohamiltonian if H itself is
not hamiltonian, but the removal of any vertex v ∈ V (H) results in a graph
H − v that is hamiltonian. It is known that an infinite family of snarks,
the so-called Flawer snarks, are hypohamiltonian [6]. Furthermore, in [17]
hypohamiltonian snarks with cyclic connectivity 5 and 6 are constructed for
all but finitely many even orders. Thus, there exist infinitely many snarks
for which the following proposition holds.

Figure 10: A coloring σ of the edges incident to vertices ui and ui+1 of a
cycle C in G. All j, k-left colorings of Bi consistent with the color schemes
in Figure 11 are σ-compatible with this coloring σ of G.

Proposition 4.4. [25] Let H be a hypohamiltonian snark, and let x, y be
a pair of non-adjacent vertices in H. Then, Hx,y is j-right for at least one
j ∈ {1, 2, 3}.

We outline the proof of this result. For any hamiltonian cycle in H − y, the
cycle must be of odd length. Thus, its edges can be alternately colored by 1
and 2, except for the two edges incident to x, which are both colored by 2.
All other edges in H are assigned the color 3. Removing the vertices x and
y from H to obtain Hx,y, and preserving the colors of (semi)edges in Hx,y

as in H, results in a j-right coloring of Hx,y for some j ∈ {1, 2, 3}. Note,
however, that the specific value of j is not determined.
As a consequence, Theorem 4.1 and Proposition 4.4 together imply that
a superposition admits a normal 5-edge-coloring for any hypohamiltonian
snark H used as a superedge, and for any pair of vertices x, y ∈ H such that
d(x, y) ≥ 3. However, this result applies only to certain ways of identifying
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a) b) c)

d) e) f)

g) h) i)

Figure 11: The color scheme τj,k for: a) (j, k) = (1, 1), b) (j, k) = (1, 2),
c) (j, k) = (1, 3), d) (j, k) = (2, 1), e) (j, k) = (2, 2), f) (j, k) = (2, 3), g)
(j, k) = (3, 1), h) (j, k) = (3, 2), i) (j, k) = (3, 3).

semiedges. Moreover, it can be verified that for some choices of x, y already
in H being the smallest Flower snark, the superedge Hx,y is not fully-right.
Hence, a more refined sufficient condition is needed.

4.3 Left colorings
A normal 5-edge-coloring of Bi is referred to as a j, k-left coloring if it is
consistent with the color scheme τj,k shown in Figure 11 and there exists
a Kempe (1, 2)-chain P l connecting a pair of left semiedges distinct from
sl

j . A superedge Bi is called doubly-left if, for every j ∈ {1, 2, 3}, it admits
a j, k-left coloring for at least two distinct values of k. In other words, Bi

is doubly-left if it has a normal 5-edge-coloring consistent with at least two
color schemes from each row in Figure 11.
For a coloring σ of G as illustrated in Figure 10, a j, k-left coloring of Bi

is σ-compatible, provided that di = j. If A = A, such a coloring is also
compatible with a right coloring of Bi−1. If A = A′, compatibility with a
right coloring of Bi−1 can be achieved by swapping colors along P l. For
other colorings σ of G, a σ-compatible coloring of Bi with similar properties
can be obtained from a j, k-left coloring by applying a color permutation
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and/or appropriate color swaps along P l.
By leveraging the compatibility of left and right colorings, and the compati-
bility among right colorings, and partitioning the superedges into singletons
or consecutive pairs, we establish the following result:

Theorem 4.5. [25] Let G be a snark with a normal 5-edge-coloring σ, C
a cycle of length g in G, and G̃ ∈ GC(A,B) a superposition of G. If each
superedge Bi is both doubly-right and doubly-left for every i = 0, . . . , g − 1,
then G̃ admits a normal 5-edge-coloring.

As with Theorem 4.1, Theorem 4.5 provides a sufficient condition for ex-
tending a normal 5-edge-coloring of G to its superposition. This condition
applies to superedges of the form Hx,y, where H is any snark, and x, y are
any vertices in H satisfying d(x, y) ≥ 3. To illustrate the broad applicability
of this condition, we present an infinite family of snarks to which it applies,
namely, Flower snarks.
Furthermore, since the extension described in Theorem 4.5 can be applied
independently along multiple vertex-disjoint cycles, it follows that Theorem
4.5 also holds when C is an even subgraph of G.

4.4 Left colorings and Flower snarks

Figure 12: The Flower snark J5.

A Flower snark Jr, for odd r ≥ 5, is defined as a graph with the vertex set

V (Jr) =
r−1⋃
i=0

{xi, yi, zi, wi},
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and the edge set

E(Jr) =
r−1⋃
i=0

{xixi+1, xiyi, yizi, yiwi, ziwi+1, wizi+1},

where indices are taken modulo r. The Flower snark for r = 5 is depicted in
Figure 12. We consider a superedge Hx,y, where H = Jr, and x, y ∈ V (H)
is any pair of vertices in H such that d(x, y) ≥ 3.
To apply Theorem 4.5 to all superpositions using Flower snarks, we need
to establish that the superedge (Jr)x,y is both doubly-right and doubly-left
for every odd r ≥ 5 and every pair of vertices x, y in Jr with d(x, y) ≥ 3. A
reduction method introduced by Hagglund and Steffen [7] allows us to limit
our consideration to the Flower snark J5 and specific pairs of vertices in J7,
as detailed in the following proposition, which is verified computationally
(in silico).

Proposition 4.6. [25] Let J5 be the Flower snark, and let x, y be a pair
of vertices in J5 such that d(x, y) ≥ 3. Then the superedge (J5)x,y is both
doubly-right and doubly-left. The same holds for a superedge (J7)x,y, where
(x, y) ∈ {(x0, x3), (z0, z3), (z3, z0)}.

Building on the above proposition and using the reduction method for larger
Flower snarks, the application of Theorem 4.5 leads to the following result:

Theorem 4.7. [25] Let G be a snark with a normal 5-edge-coloring σ,
C an even subgraph of G, and G̃ ∈ GC(A,B) a superposition of G. If
Bi ∈ {(Jr)x,y : x, y ∈ V (Jr) and d(x, y) ≥ 3} for every ei ∈ E(C), then G̃
admits a normal 5-edge-coloring.

Since the Petersen Coloring Conjecture implies the Ford-Fulkerson Conjec-
ture, Theorem 4.7 implies the results presented in [14].

5 Concluding remarks
The findings derived from our research on this topic have inspired us to
propose a conjecture suggesting the validity of additional claims. To articu-
late this conjecture, we first introduce some essential definitions. A normal
coloring of a cubic graph G is called a strong coloring if every edge in the
graph is rich. The minimum number of colors needed to achieve a strong
coloring of a cubic graph G is referred to as the strong chromatic index and
is denoted by χ′

s(G). Let NC(G) represent the set of all normal 5-colorings
of G. The Petersen Coloring Conjecture asserts that NC(G) 6= ∅ for any
bridgeless cubic graph G.
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Assuming the Petersen Coloring Conjecture is true, meaning that NC(G)
is non-empty for every bridgeless cubic graph G, we define poor(G) as the
highest number of poor edges found across all colorings in NC(G). In exam-
ining poor(G), it is particularly insightful to first analyze the 3-cycles and
4-cycles present in a snark G, provided such cycles exist within G.

Remark 5.1. [24] Let G be a bridgeless cubic graph and σ a normal 5-
coloring of G. If G contains a 3-cycle C, then every edge in C is poor in σ.
Similarly, if G contains a 4-cycle C, then either 2 or 4 edges of C must be
poor in σ.
It follows that any graph admitting a normal 5-coloring devoid of poor edges
must have a girth of at least 5. Denote by P∆

10 the graph obtained from P10
by truncating one of its vertices. A normal 5-edge-coloring of P∆

10 has at
least 3 poor edges, and a straightforward verification confirms that it has
exactly 3 poor edges. This observation motivates the following conjecture.
Conjecture 5.2. [24] Let G be a bridgeless cubic graph. If G 6= P10, then
poor(G) > 0. Moreover, if G 6= P10, P

∆
10, then poor(G) ≥ 6.

Regarding the two sufficient conditions for superpositions by any snark H
and any pair of vertices x, y in H with d(x, y) ≥ 3, the sufficient condi-
tion in Theorem 4.1 is weaker than that in Theorem 4.5. Nonetheless, it
is applicable to superpositions by infinitely many distinct snarks, specifi-
cally to all hypohamiltonian snarks used as superedges, although not to all
possible ways of semiedge identification. For instance, since Flower snarks
are hypohamiltonian, Theorem 4.1 implies that many snarks superposed
by Flower snarks admit a normal 5-edge-coloring. In contrast, the condi-
tion of Theorem 4.5 is more stringent. When applied to snarks superposed
by Flower snarks, it guarantees that all such superpositions have a normal
5-edge-coloring.
For Flower snark superedges, the sufficient condition in Theorem 4.5 can
be reformulated to involve the corresponding 2-factors, whose existence is
then verified computationally. A promising avenue for future research is
to establish that all snarks, or certain broad families of snarks, possess the
required 2-factorizations.
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Intrinsic geometry of cyclic polygons via new
Brahmagupta’s formula revisited

Dragutin Svrtan

Abstract
In this paper, we give full details for an intrinsic approach, using the
author’s New Brahmagupta formulas, to the computation of Heron
polynomials for cyclic polygons (up to n = 8). A less complete ac-
count was already given in [20] (and used by S. Moritsugu, see ref.
[27]) following the author’s talk at the International Congress of Math-
ematicians in Hyderabad, India, in 2010. We also mention a new ap-
proach by multivariate discriminants based on the fact that the cyclic
polygons are critical points of the area functional.

1 Introduction
Finding explicit equations for the area or circumradius of polygons inscribed
in a circle in terms of side lengths is a classical subject (cf. [1]). For triangle
/ cyclic quadrilaterals, we have the famous Heron / Brahmagupta formulae.
In 1994. D. P. Robbins found a minimal area equation for cyclic pen-
tagons/hexagons by a method of undetermined coefficients (cf. [5]). This
method could hardly be used for heptagons due to computational complex-
ity (143307 equations).
In [8], by using covariants of binary quintics, a concise minimal hep-
tagon/octagon area equation was obtained as a quotient of two resultants,
which in expanded form has almost one million terms. It is not clear if this
approach could be effectively used for cyclic polygons with nine or more
sides.
In [15] and [28], by using the Wiener-Hopf factorization approach, we have
obtained a very explicit minimal heptagon/octagon circumradius equation

(Dragutin Svrtan) Retired from Department of Mathematics, University of Zagreb,
Croatia, dragutin.svrtan@gmail.com
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(only 13 pages formula) in Pellian form (= a combination of two squares
of smaller polynomials whose coefficients have at most four digits). A non-
minimal area equation is also obtainable by this method. Both methods are
somehow external.
But, based on our new intermediate Brahmagupta formulas (2.6) and (2.7),
we have succeeded in finding a direct intrinsic proof of the Robbins formulas
for the area (and also for circumradius and area times circumradius) of cyclic
hexagons.
Earlier, an intricate direct elimination of diagonals for cyclic hexagons was
painful (see the footnote on the page 117) (the case of a pentagon was much
easier, cf. [21]).
We also get a simple(st) system of equations (EQ1, EQ2, EQ3 on page
121) for the area (and area times circumradius) of cyclic octagons.
It seems remarkable that our approach, with the help of Gröbner basis
techniques, leads to minimal equations (for any concrete instances we have
tested), which is not the case with the iterated resultants approach.
Inspired by our observation on page 119 at the end we present a new method
of multivariate discriminants, for finding area equation for cyclic octagons,
of a master equation by using the result (cf. [16]) that cyclic polygons are
critical points of the area functional.
For reader convenience we recommend a somewhat older survey [9] by I.
Pak and references [22]– [27] by S. Moritsugu who used our reference [20]
in [27].
We hope that our method of dissecting cyclic polygons into cyclic quadrilat-
erals is concordant with well known Grothendieck’s well-known reconstruc-
tion principle.
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2 Cyclic quadrilaterals

We first recall some basic formulas for cyclic quadrilaterals ABCD with
sides and diagonals of lengths a = |AB|, b = |BC|, c = |CD|, d = |DA| and
e = |AC|, f = |BD| whose vertices lie on a circle of radius R.

• Ptolemy’s relation (convex case):

ef = ac+ bd (2.1)

• Dual Ptolemy’s relation:

(ab+ cd)e = (ad+ bc)f (= 4SR) (2.1’)

• Diagonal equation:

(ab+ cd)e2 = (ac+ bd)(ad+ bc) (2.2)

• Area equation (Brahmagupta’s formula, 625. AD):

16S2 = 2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2)−a4−b4−c4−d4+8abcd
(2.3)

which, in a more popular form, reads as

16S2 = (−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d) (2.3’)

• Circumradius equation (Parameshavara’s formula, 1400. AD):

R2 = (ab+ cd)(ac+ bd)(ad+ bc)
(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)

(2.4)
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• Area times circumradius equation:
Let Z = 4SR, then

Z2 = (ab+ cd)(ac+ bd)(ad+ bc) (2.5)

which in a case of a triangle (d = 0) reduces to the well known relation

4SR = abc. (2.5’)

For the reader’s convenience, one of the simplest methods for obtaining
Brahmagupta’s formula makes use of trigonometry: for the interior angles
at B and D we have B+D = 180◦, implying cosD = − cosB, sinD = sinB.
By the Law of Cosine, we obtain 2(ab + cd) cosB = a2 + b2 − c2 − d2.
For area S = 1

2ab sinB + 1
2cd sinD = 1

2(ab + cd) sinB. Hence
16S2 = (2ab+2cd)2−(a2+b2−c2−d2)2 = (2s−2a)(2s−2b)(2s−2c)(2s−2d),
where 2s = a+b+c+d. This completes the classical proof of Brahmagupta’s
formula.

Our main contribution is the following discovery: the Key Lemma and a
new (atomic) Brahmagupta’s formula.
This lemma will be crucial in all our subsequent calculations concerning the
elimination of diagonals in cyclic polygons.

Key Lemma: (Intermediate Brahmagupta’s formula)
In any convex cyclic quadrilateral, we have

8Sha = 2bcd+ (b2 + c2 + d2 − a2)a (2.6)

where ha denotes the height (positive or negative) of the center of the
circumcircle with respect to the side AB.

In the case of a nonconvex quadrilaterals, we can formally obtain all the
relations by simply allowing side lengths to be negative (e.g. by replacing a
with −a).
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Proof of the Key Lemma. S = S′ + S′′ ⇒
4RS = 4RS′ + 4RS′′ = abe+ cde (Dual Ptolemy’s relation)

By Law of Cosine, dual Ptolemy’s and Diagonal equation for ha ≥ 0 we

have: ha = R cos γ = R
b2 + e2 − a2

2be
= (ab+ cd)(b2 + e2 − a2)

8Sb

= 2bcd+ (b2 + c2 + d2)a− a3

8S
.

(Case ha < 0 is similar.) ■
Let Sa = aha

2 be the signed area of the characteristic triangle 4OAB deter-
mined by the side AB (of length a) and circumcenter O of a cyclic quadri-
lateral ABCD. Then we get

Corollary 2.1. (New Brahmagupta’s formulas)

16SSa = a2(b2 + c2 + d2 − a2) + 2abcd (2.7)

and three more formulas, by cyclically permuting a, b, c and d.

Note that by adding all four such formulas we get the original Brah-
magupta’s formula because

S = Sa + Sb + Sc + Sd.

For general quadrilaterals in a plane, we have:

• Bretschneider’s formula ( [2]) or Staudt’s formula (1842):

16S2 = 4e2f2 − (a2 − b2 + c2 − d2)2. (2.8)
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For cyclic quadrilaterals, in view of (2.1), it gives another form of
(2.3):

16S2 = 4(ac+ bd)2 − (a2 − b2 + c2 − d2)2. (2.3”)

The formula (2.8) is the simplest formula for the area of the quadrilateral in
terms of its sides and diagonals. But there are infinitely many other ways
to do so, since these 6 quantities satisfy Euler’s four-point relation

e2f2(a2 + b2 + c2 + d2 − e2 − f2) =
= e2(a2 − b2)(d2 − c2) + f2(a2 − d2)(b2 − c2)+

+ (a2 − b2 + c2 − d2)(a2c2 − b2d2)
(2.9)

This is only a quadratic equation with respect to a square of each parameter.
The Euler’s four point relation follows from the Cayley–Menger determinant
for the volume V of a tetrahedron with edges of lengths a, b, c, d, e, f if we
set V = 0.

Remark 2.2. In a solution of a problem by J.W.L.Glaisher: With four
given straight lines to form a quadrilateral inscribable in a circle, A.Cayley
(in 1874.) observed the following identity, equivalent to (2.9):[

(a2 + b2 + c2 + d2 − e2 − f2)(ef + ac+ bd) − 2(ad+ bc)(ab+ cd)·
]

·(ef − ac− bd) = [(ab+ cd)e− (bc+ ad)f ]2
(2.9’)

which directly shows that Ptolemy’s relation (2.1) implies the dual
Ptolemy’s relation (2.1’).
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3 Cyclic hexagons

Cyclic hexagon ABCDEF inscribed in a circle of radius R, with side lengths
a = |AB|, b = |BC|, c = |CD|, d = |DE|, e = |EF |, f = |FA|, y = main
diagonal, x,z = small diagonals.

• Main diagonal equation

Let y = |AD| denote the length of the main diagonal of the cyclic hexagon
ABCDEF . Then we may think of the hexagon ABCDEF as made up of
two quadrilaterals with a common side AD, both having the same circum-
radius R. Thus using the formula (2.4) twice we get equality

(R2 =)
(de+ fy)(df + ey)(ef + dy)

(−d+ e+ f + y)(d− e+ f + y)(d+ e− f + y)(d+ e+ f − y)
=

= (ab+ cy)(ac+ by)(bc+ ay)
(−a+ b+ c+ y)(a− b+ c+ y)(a+ b− c+ y)(a+ b+ c− y)

(3.1)
leading to a 7–th degree equation

(def − abc)y7 + · · · = 0
for the length of the main diagonal y.
With substitutions

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc (3.2)
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U = d2 + e2 + f2, V = d2e2 + d2f2 + e2f2, W = def (3.2’)

we can express the area S′ (resp. S′′) of the quadrilateral ABCD (resp.
ADEF ) as follows

16S′2 = 4v−u2+8wy+2uy2−y4, 16S′′2 = 4V −U2+8Wy+2Uy2−y4 (3.3)

Then (3.1) becomes equivalent to

P
main diag.
6 ≡ −S′′2

(
wy3 + vy2 + uwy + w2

)
+

+ S′2
(
Wy3 + V y2 + UWy +W 2

)
= 0 (3.1’)

(i.e. (w −W )y7 + (v − V )y6 + · · · + (4v − u2)W 2 − (4V − U2)w2 = 0)
(3.1”)

By letting f = 0, we obtain the diagonal equation for a cyclic pentagon
ABCDE:

P
diag.
5 ≡
abc y7 + (a2b2 + a2c2 + b2c2 − d2e2)y6 + · · · + a2b2c2(d2 − e2) = 0

(cf. Bowman [4]).

• Small diagonal equation

Let x = |AC| denote the length of a ”small” diagonal in the cyclic hexagon
ABCDEF . By (2.2) we obtain the equation

(ab+ cy)x2 = (ac+ by)(bc+ ay)

by which we can eliminate y in our main diagonal equation (3.1”). This
gives our small diagonal equation, which has degree 7 in x2:

P
small diag.
6 ≡

(abc− def)(abd− cef)(abe− cdf)(abf − cde)x14 + (. . .)x12 + · · · +
+(a2 − b2)4(acd− bef)(ace− bdf)(acf − bde)(ade− bcf)
(adf − bce)(aef − bcd) = 0

(3.4)
By letting f = 0 we obtain

P
small diag.
6

∣∣∣∣
f=0

= a3b3P
diag.
5

(
P

diag.
5

)∗
(3.4’)

where Pdiag.
5 ≡ cde x7 + · · · = 0 and

(
P

diag.
5

)∗
is obtained by changing

sign of an odd number of side lengths c, d, e.
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• Area equation: Naive approach

A naive approach to get the area equation of cyclic hexagon would be to
write the area S of our hexagon as

S = S′ + S′′ (3.5)

Then by rationalizing the equation (3.5) we obtain an equation of degree 4
in y:

(S2 + S′2 − S′′2)2 − 4S2S′2 = 0 (3.6)

where S′2 and S′′2 are given by Brahmagupta’s formula (3.3). More explic-
itly, in terms of the squared area A = (4S)2 we have

Q ≡
(A+ 4(v − V ) + U2 − u2 + 8(w −W )y + 2(u− U)y2)2−
− 4A(4v − u2 + 8wy + 2uy2 − y4) = 0

(3.6’)

By computing the resultant of this equation and the main diagonal equation
(3.1’) w.r.t. y we obtain a degree 14 polynomial in A.

Resultant
(
Eq(3.6′), Pmain diag.

6 , y

)
= F1F2

both of whose factors have degree 7 in A:

F1 = (w −W )2A7 + · · ·
F2 = A7 + (7u2 + 7U2 − 10uU − 24v − 24V )A6 + · · ·

The true equation (obtained first by Robbins in 1994. by undetermined coef-
ficients method) is given by F2 (it has 2042 monomials), and the extraneous
factor F1 (which has 8930 monomials) is 4 time bigger4.

• Area equation: new approach leading to an intrinsic proof.

The complications with the extraneous factor in the previous proof were
probably caused by using squaring operation twice in order to get the
equation (3.6) (or (3.6’)). So we are searching a simpler equation relating
the area S and the main diagonal. After a long struggle we obtained an
extraordinary simple relationship given in the following

Key Lemma. The area S of the cyclic hexagon ABCDEF and areas
S′ and S′′ of the cyclic quadrilaterals ABCD and ADEF obtained by

4The computation with MAPLE 9.5 on a PC with 2GHz and 2GB RAM took ≈ 300
hours (in year 2004). Nowadays with MAPLE 12 on a 64–bit PC with 8GB it takes ≈ 3
hours.
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subdivision with the main diagonal of length y = |AD| satisfy the following
relations:

a) (y3 − (a2 + b2 + c2)y − 2abc)S′′ + (y3 − (d2 + e2 + f2)y − 2def)S′ = 0

b) (y3−(a2+b2+c2)y−2abc)S+((a2+b2+c2−d2−e2−f2)y+2(abc−def))S′ =
0

Proof. a) Let x = |AC|, y = |AD|, z = |DF |. Let S′
1, S′

2 S
′′
1 and S′′

2 be
the areas of triangles ABC, ACD, ADF and DEF respectively. Then, by
(2.5’) we have 4S′

1R = abx, 4S′
2R = cxy, 4S′′

1R = fyz, 4S′′
2R = dez. So we

have 4S′R = (ab+ cy)x, 4S′′R = (fy + de)z. This implies

S′′

S′ = fy + de

ab+ cy
· z
x

The diagonal equation for the main diagonal y = |AD| in the middle quadri-
lateral ACDF : (cx+ fz)y2 = (cf + xz)(fx+ cz) can be rewritten as

cx(y2 − f2 − z2) = fz(−y2 + c2 + x2)

Now we have

S′′

S′ = fy + de

ab+ cy
· y

2 − f2 − z2

x2 + c2 − y2 · c
f

= c

f

(fy + de)(y2 − f2) − (fy + de)z2

(ab+ cy)(c2 − y2) + (ab+ cy)x2

Finally we use the diagonal equations for small diagonals x and z in respec-
tive quadrilaterals

(ab+ cy)x2 = (ac+ by)(bc+ ay), (fy + de)z2 = (df + ey)(ef + dy)

and by simplifying we get

S′′

S′ = y3 − (d2 + e2 + f2)y − 2def
2abc+ (a2 + b2 + c2)y − y3

b) follows from a) by substituting S′′ = S − S′.

By writing the equation b) in Key Lemma with shorthand notations (3.2)
and (3.2’)

(y3 − uy − 2w)S + ((u− U)y + 2(w −W ))S′ = 0

and multiplying it by 2S, 2S′ respectively and using the relation

2SS′ = S2 + S′2 − S′′2
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obtained from (3.5) by squaring, we obtain the following
KEY EQUATIONS:

Q1 := 2(y3 − uy − 2w)S2 + ((u− U)y + 2(w −W ))(S2 + S′2 − S′′2) = 0

Q2 := (y3 − uy − 2w)(S2 + S′2 − S′′2) + 2((u− U)y + 2(w −W ))S′2 = 0

where S′2 and S′′2 are given by Brahmagupta’s formulas (3.3).

MAIN THEOREM. The resultant of the Key Equations with respect to
y gives the minimal degree 7 equation for the squared area A = (4S)2 of
cyclic hexagon.

Proof. The minimal polynomial

α6 = Resultant(Q1, Q2, y)/C = A7+(7(u2+U2)−10uU−24(v+V ))A6+· · ·

where C = 4
[
4(W − w)3 + (u− U)3(wU − uW )

]
.

Remark. Observe that 16Q1 = [2A+ 2(u− U)2]y3 + · · ·
Similarly the polynomial Q in equation (3.6’) has the form

Q =
[
4A+ 2(u− U)2

]
y4 + · · ·

If we define

Q3 := Q− 2 · 16Q1
= 4(−uy2 − 6wy − 4v + u2)A+ (4(v + w − V −W ) + U2 − u2 +A)·

· (A+ 4(v − V ) + U2 − u2 + 8(w −W )y + 2(u− U)y2)

then we also get

α6 = Resultant(Q3, 16Q1, y)/(−8A2)

New Observation! By using the fact that cyclic polygons are critical points
of area (c.f. [16]) we can obtain New Theorem which uses the theory of
discriminants := discrim(Q, y)/(214A2) = A7 + · · · . Where Q is given in
(3.6’).
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4 Area equations of cyclic octagons and (hep-
tagons)

We trisect cyclic octagon ABCDEFGH, by two diagonals AD and EH into
three quadrilaterals ABCD, ADEH and EFGH whose areas we denote by
S1, S2 and S3 respectively. The area S of ABCDEFGH is then equal to

S = S1 + S2 + S3 (4.1)

By Key Lemma a) applied to hexagons ABCDEH and ADEFGH we ob-
tain the following equations:

(2jz + (i+ z2)y − y3)S1 + (2w + uy − y3)S2 = 0 (4.2)
(2jy + (i+ y2)z − z3)S3 + (2W + Uz − z3)S2 = 0 (4.3)

where we have used the following abbreviations:

y = |AD|, z = |EH|

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc

U = e2 + f2 + g2, V = e2f2 + e2g2 + f2g2, w = efg

i = d2 + h2, j = dh

(4.4)

Furthermore the Brahmagupta formulas for the 16 times squared areas Ai =
16S2

i , i = 1, 2, 3 can be written now as follows:

A1 = 4v − u2 + 8wy + 2uy2 − y4 (4.5)
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A2 = 4(j + yz)2 − (y2 + z2 − i)2 (4.6)
A3 = 4V − U2 + 8Wz + 2Uz2 − z4 (4.7)

(For A1, A3 cf. (3.3), for A2 cf. (2.3”) from Preliminaries!)
By equating the circumradius formulas for cyclic quadrilaterals ABCD and
ADEH (resp. ABCD and EFGH) we obtain two equations:

EQ1 := (4v − u2 + 8wy + 2uy2 − y4)(jzy3 + (iz2 + j2)y2 + (i+ z2)jzy+
+(jz)2) − (4(j + yz)2 − (y2 + z2 − i)2)(wy3 + vy2 + uwy + w2) = 0

(4.8)
EQ2 := (4v − u2 + 8wy + 2uy2 − y4)(Wz3 + V z2 + UWz +W 2)−

− (4V − U2 + 8Wz + 2Uz2 − z4)(wy3 + vy2 + uwy + w2) = 0
(4.9)

Our next aim is to get one more equation (as simple as possible) relating the
lengths y and z of diagonals and the squared area A = 16S2 of our cyclic
octagon. Here is a result of a many years long search:

Theorem 4.1. (Fundamental equation involving area of cyclic octagons)
Let A = 16S2 be the squared area of any cyclic octagon. Then we have the
following equation of degree 6 in y and z and linear in A:

EQ3 := αγ(A+ η) + 2(α− β)(δ − γ)A2 = 0 (4.10)

where

α = 2jz + iy + yz2 − y3, β = 2w + uy − y3

γ = 2jy + iz + y2z − z3, δ = 2W + Uz − z3

η = u2 + U2 − i2 − 4v − 4V + 4j2 − 8wj − 8Wz + 8jyz+
+ 2(i− u)y2 + 2(i− U)z2 + 2y2z2

Proof. We start by squaring the equation (4.1)

S2 = S2
1 + S2

2 + S2
3 + 2S1S2 + 2S1S3 + 2S2S3 (4.11)

Solving (4.2) for S1 and (4.3) for S2 yields:

S1 = −β

α
S2, S3 = − δ

γ
S2 (4.12)

Then we substitute these only into the mixed terms of (4.11). This gives:

S2 = S2
1 + S2

2 + S2
3 + 2

(
−β

α
+ βδ

αγ
− δ

γ

)
S2

2
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By multiplying the last equation by 16 and using that Ai = 16S2
i , A = 16S2

we obtain

αγ(A−A1 +A2 −A3) + 2(α− β)(δ − γ)A2 = 0

and set
η = −A1 +A2 −A3

and the result follows by (4.5), (4.6) and (4.7).

Remark 4.2. By using Gröbner basis for {EQ1, EQ2, EQ3} we get mini-
mal equation α7 (α8) for squared area (A = 16Area2) of cyclic heptagons
(octagons) in concrete instances very fast.

Remark 4.3. Maley M.F., Robins D.P. and Roskies J. ( [8]) obtained
explicit formulas for α7 and α8 in terms of elementary symmetric functions
of sides lengths squared.

α7 = 210155Res(F̃ , G̃, u3)
u4

2Res(F̃1, F̃2, u3)

Half a year later we have fully expanded α7 which has 955641 terms with
up to 40-digits coefficients (approx. 5000 pages).

Remark 4.4. For ζ7, the Z(= 4SR)-polynomial, by a similar method, we
obtained explicit formula with 31590 terms with up to 11 digits coefficients.

Remark 4.5. For ρ7 = R2-equation of cyclic heptagon, by a different tech-
nique, we obtained a 15 pages output in a condensed (Pellian) form – a
quadratic form of two smaller polynomials whose coefficients have up to
4 digits coefficients in terms of new quantities (which are certain linear
combinations of elementary symmetric functions of side lengths squared)
published explicitly in [28].

5 Area equations for cyclic octagons by using bi-
variate discriminants

We start with a cyclic octagon ABCDEFGH, trisected by two diagonals
AD and EH into three quadrilaterals ABCD, ADEH and EFGH whose
areas are S1, S2 and S3 respectively. The area S of ABCDEFGH is then

S = S1 + S2 + S3 . (5.1)

For the squared areas Ai = 16S2
i , i = 1, 2, 3 we have the formulas (4.5 . . .

4.7) relying on the abbreviations (4.4).
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The rationalized form of (4.1) can be written compactly as follows:[
(A−A1 −A2 −A3)2 − 4 (A1A2 +A1A3 +A2A3)

]2
− 64AA1A2A3 = 0 .

(⋆)
(This is in fact a general Brahmagupta polynomial evaluated at a2

i = Ai,
i = 1, 2, 3, a2

4 = A).
By inserting
A1 = 4v − u2 + 8wy + 2uy2 − y4 from (4.5),
A2 = 4(j + yz)2 − (y2 + z2 − i)2 from (4.6) and
A3 = 4V − U2 + 8Wz + 2Uz2 − z4 from (4.7)

with
y = |AD|, z = |EH|

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc

U = e2 + f2 + g2, V = e2f2 + e2g2 + f2g2, w = efg

i = d2 + h2, j = dh
from (4.4) we obtain a master equation

M(A, u, v, w, U, V,W, i, j, y, z) = 0 .

Then the area equation is the discriminant of this master equation!
We conjecture similar results for arbitrary even sided cyclic polygons.
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Two reminders on Ptolemy and Ramanujan and
some problems

Darko Veljan

Abstract
We present, discuss, and offer alternative proofs for a couple of beau-
tiful results spanning almost two millennia, but unified by their con-
nections to Indian mathematics. Several open problems are suggested
for future research.

1 Introduction
The motivation for this note was the nice Croatian - Indian mathematical
evening held on Dec. 20, 2024, at the Department of Mathematics, Univer-
sity of Zagreb, where three 20-minute lectures were given by academician
Andrej Dujella, prof. dr. sc. Zvonimir Šikić and prof. dr. sc. Mirko Primc,
relating their research works connected to some Indian mathematicians. The
main organizer of the event was prof. dr. sc. Darko Žubrinić. After the
lectures and some Indian food snacks and Croatian wines and beverages, I
put on the blackboard some of Ramanujan’s problems. The lecturers and
other participants didn’t know at the moment how to prove them (neither
did I). The first topic of this note (on Ptolemy) is also deeply interconnected
with Indian mathematics. So, these are the main motivations of this note.
In my translation [16] of the beautiful book [11], in two topics I added some
additional new stuff that does not appear in the original (as well as some
others). The first is Ptolemy’s formula in the topic Ptolemy’s Almagest,
year about 150 and Fuhrmann’s formula, and in the year 1500 topic The
series for computing π, I added a wonderful identity of Ramanujan which
I’ll explain in the sequel. This note is not only my own research, but I
think it’s worth reminding us of these two gems of mathematics. We end
the paper with some problems (not in the original) from [16].

(Darko Veljan) University of Zagreb, Faculty Science, Zagreb, Croatia,
darko.veljan@gmail.com

127

https://doi.org/10.5592/CO/CCD.2024.09


D. Veljan

2 Ptolemy’s theorem
The famous mathematician and astronomer Ptolemy, or Claudius Ptolo-
maeus (c. 90 - c. 168) from Alexandria, published about the year 150 his
comprehensive work Almagestus, or simply Almagest in 13 books, where he
described almost all knowledge of astronomy and mathematics known to his
time. The work is also known in Latin as Syntaxis Mathematica. He created
a geocentric model of the Universe that was accepted as true for more than
1300 years until Copernicus’ Revolution of the Celestial Spheres in 1543.
Ptolemy had trigonometric tables of certain quantities like the function sine
with measures of every 15’.
From the tables, he deduced the formula for the sine of the sum of two
angles. In fact, this was the root of the theorem, many centuries later
named after Ptolemy.
A (convex) quadrilateral (or any convex polygon) is called cyclic if it is
inscribed in a circle (i.e. all of its vertices lie on a single circle). Now we
can formulate the basic theorem.

Theorem 2.1 (Ptolemy’s theorem (about AD 150)). A quadrilateral
ABCD (vertices in this order) is cyclic if and only if the product of the
lengths of its diagonals is equal to the sum of the products of the lengths of
the pairs of opposite sides.

In symbols, if |XY | is the length of the segment between points X and Y ,
and if we denote |AB| = a, |BC| = b, |CD| = c, |DA| = d, |AC| = e,
|BD| = f , then we have:

ef = ac+ bd. (2.1)
It seems that the first rigorous proof of this theorem was given by the
Arab mathematician (and translator) Abul Wafa (or Wefa) about AD 980.
However, many used the Ptolemy formula much earlier. For example, the
Indian mathematician Brahmagupta (598-660) used Ptolemy’s theorem to
compute the area and the radius of the cyclic quadrilateral in terms of side
lengths around year 650. In fact, Brahmagupta first proved (with the same
notation as above) that

f

e
= ad+ bc

ab+ cd
. (2.2)

Equations (2.1) and (2.2) enable us to express the lengths of diagonals in
terms of side lengths of cyclic quadrilaterals. Then, using the well-known
Heron’s formula from about AD 60, which gives the triangle area in terms
of its side lengths, Brahmagupta computed the area S and the radius R of
the cyclic quadrilateral in terms of its side lengths a, b, c, d as

16S2 = (a+ b+ c− d)(a+ b− c+ d)(a− b+ c+ d)(−a+ b+ c+ d), (2.3)
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and

R2(a+ b+ c− d)(a+ b− c+ d)(a− b+ c+ d)(−a+ b+ c+ d) =
= (ab+ cd)(ac+ bd)(ad+ bc).

(2.4)

Note that Brahmaguptas’s formulae reduce to triangle formulae for say,
d = 0. More precisely, formula (2.3) reduces to Heron’s formula and formula
(2.4) to the triangle’s circumradius. Apparently, some of these formulae for
triangles were known even to Archimedes about 220 B.C.

Proof of Ptolemy’s theorem. There are many known proofs of Theorem 2.1,
as presented e.g. in [1]. Perhaps the shortest and most elegant proof is
by inversion. Choose a big circle K with the center, say, D and radius r,
so that the circumcircle k = ABCD is inside K. Consider the inversion
I = I(D, r). Then k is mapped into a line k′. Let A′ = I(A), B′ = I(B),
C ′ = I(C). Then |A′B′| + |B′C ′| = |A′C ′| on the line k′. But

|A′B′| = |AB|r2

|DA||DB|
,

and similarly for |B′C ′| and |A′C ′|. So, equality (2.1) follows.
Conversely, if one of the vertices does not lie on the circle k, say, B, then
|A′B′| + |B′C ′| > |A′C ′|, by triangle inequality, hence ac+ bd > ef .
The formula (2.2) can also be easily proved via inversion. For a more general
fact see Mathologer, Ptolemy’s theorem.

Ptolemy’s theorem is equivalent to the following facts: the addition formulas
for sine and cosine, Pythagoras’ theorem, the sine law for triangles, the
cosine law for triangles, and many more. Since Pythagoras’ theorem is
equivalent to Euclid’s fifth postulate, we may say that Ptolemy’s theorem
is in the essence of Euclidean geometry.
Today there are many generalizations, extensions, corollaries, and equivalent
statements of Ptolemy’s theorem beyond those already mentioned. Even
some Croatian mathematicians contributed to the topic, e.g. [4, 8, 9]. One
of the best-known generalizations and most quoted extensions of Ptolemy’s
is Fuhrmann’s hexagon theorem which I also quoted in [16] in the topic
Ptolemy’s Almagest (150). This theorem (see [2]) is named after the German
mathematician Wilhelm Fuhrmann (1833-1904).

Theorem 2.2 (Fuhrmann’s theorem (1890)). Let the opposite side lengths
of a convex cyclic hexagon be a, a′, b, b′ and c, c′, and let e, f, g be the polygon
(big) diagonals, such that a, a′ and e have no common polygon vertex, and
likewise for b, b′ and f and c, c′ and g. Then

efg = aa′e+ bb′f + cc′g + abc+ a′b′c′. (2.5)
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Idea of the proof. Let ABCDEF be the cyclic hexagon with side lengths
AB = a, BC = b, CD = c, DE = a′, EF = b′, FA = c′ and CF = e,
DA = f and BE = g. Here AB = |AB|, etc. We apply Ptolemy’s theorem
to each of the four convex cyclic quadrilaterals ABDE, BCDF , ADEF ,
and ABEF . After some simple algebraic manipulations with Ptolemy’s
relations, we can obtain the formula (2.5). We omit some tedious computa-
tional details. See also some Internet sites such as [2].

Ptolemy’s theorem in the hyperbolic plane, say with curvature −1, is given
by the following. The formula is the same as (2.1), but instead of x now we
have s(x) = sinh

(
x
2
)
.

Theorem 2.3 (Ptolemy’s theorem in hyperbolic geometry). Let ABCD be
a convex hyperbolic quadrilateral inscribed in a hyperbolic circle. Then

s (|AC|) s (|BD|) = s (|AB|) s (|CD|) + s (|AD|) s (|BC|) . (2.6)

The converse is also true. A convex hyperbolic quadrilateral ABCD has a
hyperbolic circumcircle if three of the points lie on a hyperbolic circle and
satisfy equation (2.6).

Proofs are similar to the original proof of Ptolemy’s theorem and can be
found in the literature cited before. Of course, the spherical version of
Ptolemy holds as well with the same formula (on the unit sphere) with
s(x) = sin

(
x
2
)
.

In [14], we managed to prove some interesting geometric facts on cyclic
pentagons and, among other things, we proved the Robbins formulae which
gives a polynomial equation for the area and radius of a cyclic pentagon
in terms of its side lengths, something like Brahmagupta’s formulas (2.3)
for cyclic quadrilateral, but much more involved. A nice survey on the
topic of Robbin’s conjectures is given in [10]. Recently, D. Svrtan in [13]
used Hopf-Wiener factorization of certain Laurent polynomial invariant of
cyclic polygons and by tricky computer search obtained huge polynomials
for cyclic n-gons areas and circumradius for n = 4, 5, 6, 7 and 8.
As said earlier, there are many generalizations of Ptolemy’s theorem. The
best seems to me is the following from [3].

Theorem 2.4 (M. Bencze, 2011). Let A1A2, . . . An be a convex cyclic Eu-
clidean polygon with vertices in given order. Then the following holds

|A2An|
|A1A2||A1An|

= |A2A3|
|A1A2||A1A3|

+ |A3A4|
|A1A3||A1A4|

+ · · · + |An−1An|
|A1An−1||A1An|

.

(2.7)
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Proof is again by inversion. Note that for n = 4 we get Ptolemy’s relation
(2.1), for n = 5 we have this in [14] in some form, and for n = 6 we get
Fuhrmann’s formula (2.5).
A generalization of Ptolemy’s theorem in n-dimensional Euclidean space
was given in [5]. Furthermore, a very recent analog of Fuhrmann’s theorem
in the Lobachevsky plane was given in [7]. Here we stop on Ptolemy.

3 Some Ramanujan identities and conjectures
Now we shall consider a completely different topic, but also deeply connected
to Indian mathematics. It is about the brilliant Indian mathematician Srini-
vasa Ramanujan (1887-1920), see his Collected papers and problems with
some solutions [6] having 355 pages (which my colleague M. Primc kindly
lent me after our Croatian-Indian math evening).
In [16], I put the following Ramanujan’s identity in the article Series for
Computing π, the year 1500:

A+B =
√
πe

2
. (3.1)

Here A is the infinite series

A = 1 + 1
1 · 3

+ 1
1 · 3 · 5

+ · · · =
∑
n≥1

1
(2n− 1)!!

,

and B is the infinite continuous fraction

B = 1
1 + 1

1+ 2
1+ 3

1+···

.

The exact values of both A and B are not known, but still, their sum is
the square root of πe

2 . I have seen it somewhere and couldn’t resist but
put that gem in my translation [16]. Now I found it in [6], p. 341, as
Ramanujan’s question 541 in the Indian Journal of Mathematics from 1914.
I tried to prove it but with no success. There is no solution in [6]. Then
the organizer of that event, my colleague D. Žubrinić, sent me the link
of Mathologer https://www.youtube.com/watch?v=6iTdNmDHfV0 with a
very nice explanation and proof of formula (3.1).
So, following this link, I’ll try to present proof of 3.1. Once more this proof
was shown on Mathologer Masterclass on the above link under the title
Ramanujan’s easiest hard infinite monster on June 24, 2023.
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Proof of Ramanujan identity (3.1). First, recall the Gauss normal distribu-
tion integral formula. The area under the Gauss bell is

√
π =

∫ ∞

−∞
e−t2

dt (3.2)

See e.g. Wikipedia on Gaussian integral. On the other hand, recall Wallis’
formula from 1665:

π

2
= 2 · 2 · 4 · 4 · 6 · 6 · · ·

1 · 3 · 3 · 5 · 5 · 7 · 7 · · ·
. (3.3)

A short proof of Wallis’ formula is as follows. It is well known that

sin x = x
∏
k≥1

(
1 −

(
x

kπ

)2
)
.

Substituting x with π
2 yields formula (3.3). This is a special case of Euler’s

product formula
sin(πz)
πz

=
∏
n≥1

(
1 − z2

n2

)
,

valid for any complex number z. It is also known as Euler’s sinc function for-
mula (see e.g., https://proofwiki.org/wiki/Euler_Formula_for_Sine_
Function/Complex_Numbers ).
Now consider the following series to get A in (3.1). Let

y(x) = x

1!
+ x2

2!
+ x3

3!
+ · · · =

∑
n≥1

xn

n!
. (3.4)

By taking derivative of (3.4), we have

y′(x) = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · = 1 +

∑
n≥1

xn

n!
. (3.5)

Hence, y(x) = Cex − 1, but from y(0) = 0, we get C = 1, so y(x) = ex − 1.
So, for x = 1, we have

e = 1 + 1
1!

+ 1
2!

+ 1
3!

+ · · · ,

i.e. the well-known Euler’s number e, and the well-known series expansion
of the exponential function

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · .
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Now consider the function

y(x) = x

1
+ x3

1 · 3
+ x5

1 · 3 · 5
+ x7

1 · 3 · 5 · 7
+ · · · =

∑
n≥1

x2n−1

(2n− 1)!!
. (3.6)

By taking the derivative of (3.6), we get the differential equation

y′(x) = 1 + xy(x), (3.7)

with y(0) = 0. The solution of this linear ordinary differential equation of
the first order (3.7), as known from the theory of ODE, is given by

y(x) = e
x2
2

∫ x

0
e− t2

2 dt. (3.8)

So, the right-hand side of (3.8) is the right-hand side of (3.6). So far we
know that √

πe

2
= A+

√
e

∫ ∞

1
e− t2

2 dt. (3.9)

What is left to prove is that the second summand on the right-hand side
of (3.9) is equal to the continuous fraction B from (3.1). Now consider the
function

y(x) = e
x2
2

√
π

2
− e

x2
2

∫ x

0
e− t2

2 dt. (3.10)

By taking the derivative of (3.10), it is easy to check that we get the differ-
ential equation (a bit different from (3.7)):

y′(x) = xy(x) − 1, (3.11)

with y(0) =
√

π
2 . Keep taking the derivatives of (3.11) repeatedly, we obtain

y′ = xy − 1
y′′ = xy′ + y

y′′′ = xy′′ + 2y
y′′′′ = xy′′′ + 3y′′

...

Hence y′

y = x − 1
y , y′′

y′ = x + y
y′ , y′′′

y′′ = x + 2 y′

y′′ , y′′′′

y′′′ = x + 3y′′

y′′′ , and so on.
Then by substituting and by little calculation we finally get

y(x) = 1
x+ 1

x+ 2
x+ 3

x+ 4
...

. (3.12)
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Setting x = 0 in (3.12) we get

y(x) = 1
1
2
3
4
...

,

and by taking little care of this infinite fraction we obtain that it is equal
to

2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · · ·

.

By Wallis’ formula, this is equal to π
2 . Finally, we therefore proved (with

some care on convergence) that for all x > 0, we have

e
x2
2

√
π

2
=
(
x1

1
+ x3

1 · 3
+ x5

1 · 3 · 5
+ · · ·

)
+ 1
x+ 1

x+ 2
x+ 3

x+ 4
...

. (3.13)

Thus, (3.13) holds also for x = 1. Thus, the identity (3.1) is proved.

In the Collected Papers [6] of S. Ramanujan there are many interesting the-
orems, identities, approximations, formulas, and conjectures. For instance,
Ramanujan proved that for a sufficiently big natural number n, there are,
as a rule, log logn prime divisors of n. The next example is his approxima-
tion π ≈ 63(17+15

√
5)

25(7+15
√

5) which is exactly up to 9 decimals (of course, without
computers!). Even today, certain aspects of the so-called „combinatorial
Rogers-Ramanujan identities“are the topic of current research, e.g. see [12]
by Croatian mathematician Mirko Primc, an expert in applications of rep-
resentation theory and Lie algebra theory in combinatorics.
Here is one of Ramanujan’s problems posed in 1913 (from [6]):
Compute

a) √
1 + 2

√
1 + 3

√
1 + · · ·, (3.14)

b) √
6 + 2

√
7 + 3

√
8 + · · ·. (3.15)
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Solution by S. Ramanujan.
a) It holds n(n+ 2) = n

√
1 + (n+ 1)(n+ 3). Let f(n) = n(n+ 2). Then

f(n) = n
√

1 + f(n+ 1) = n

√
1 + (n+ 1)

√
1 + f(n+ 2) = · · · ,

hence
n(n+ 2) = n

√
1 + (n+ 1)

√
1 + (n+ 2)

√
1 + · · ·.

For n = 1, the result of a) is equal to 3.
b) Similarly, let f(n) = n(n+3). Since n(n+3) = n

√
n+ 5 + (n+ 1)(n+ 4),

we have

f(n) = n
√
n+ 5 + f(n+ 1)

= n

√
n+ 5 + (n+ 1)

√
n+ 6 + f(n+ 2) = · · · ,

and for n = 1, we get that the result of b) is equal to 4.
Ramanujan also conjectured many identities and a lot of claims which
he or other people resolved later. One easy is that the number
0.2357111317192329 . . . (concatenation of all primes after the decimal
comma) is not a rational number. But his conjecture that the num-
ber π + e is not rational is still not resolved. He knew Leibniz’s for-
mula π

4 = 1 − 1
3 + 1

5 − 1
7 + · · · , which follows from the series expan-

sion arctan x = x − x3

3 + x5

5 − x7

7 + · · · for x = 1, and Euler’s number
e = 1+ 1

1! + 1
2! + 1

3! + · · · and was not sure about their sum, although both π
and e are transcendental. Also, an open problem is that 2e is not rational.
It was only in 1934 that was proved that 2 to the power of

√
2 and log 2

log 3
are transcendental. It is quite possible that Ramanujan considered such
problems much earlier.
Apparently, Leibniz’s formula for π

4 was known to the Indian mathematician
Nilakanthi Somayai (1444-1530) and also to Scott James Gregory (1638-
1675). Leibnitz proved it in 1673 geometrically. Even Newton praised that
formula and said that it showed that Leibniz was a genius, although they had
a long dispute about whose contribution to calculus was most influential.
In any case, Srinivasa Ramanujan definitely was a genius.
In the end, we provide some questions, sayings, and open problems I put
in [16].
Besides Millenium problems which I included in my translation (not in the
original), I also added some solved and unsolved problems in the translation
[16] of [11].
Here are some.
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• Four girls are bathing in the (say) Adriatic sea. Each two are at a
distance from each other at about 25 meters. Three of the girls have
red bikinis, what has the fourth girl on herself?

• (Paul Erdös,1936) If a set A of natural numbers has the property
that the sum of the reciprocals diverges, then A has an arithmetical
sequence of arbitrary length (true for A primes, by T. Tao and B.
Green, 2012)

• David Hilbert (1862 -1943) once said that if he awakens (in some sense)
1000 years from now, his first question would be: Is the Riemann
hypothesis solved?

• Euler’s perfect brick (or box ) problem (about 1772): Is there a perfect
brick? A perfect brick is a quadrum (brick) with all lengths of edges,
diagonals (plane and space) are whole numbers.

• Graham’s problem (1996): Is the sequence (an), unbounded if a0 = 2
and an+1 = an − 1

an
?

• Geometry problem (from 1930th): Which polyhedron on n vertices on
the unit sphere has the maximal volume? (The five Plato’s bodies are
solutions, but in general?)

• Atiyah’s conjecture (1998) on star configurations: Consider n > 2
points („stars“) in space, not all on a line. From any point („star“)
consider n−1 directions to other „stars“(considered as complex num-
bers on the unit sphere). Attach to any point („star“) the polynomial
whose directions are the roots. Then is the set of these n polynomials
linearly independent (over the complex numbers)?

• (D. Veljan, 2023): The probability that a randomly and uniformly
chosen point from the circumball of a tetrahedron is out of the in-
scribed ball is greater than or equal to 1 −

√
d3

(3e1)3 , (see [15]) where
e1 = aa′ +bb′ +cc′, d3 = (aa′ +bb′ −cc′)(aa′ −bb′ +cc′)(−aa′ +bb′ +cc′),
and a and a′ are the opposite side lengths of a tetrahedron and simi-
larly for b, b′ and c, c′. (We can think of vertices of the tetrahedron as
stars and the chosen point as an exoplanet.) What are the hyperbolic
3D and 4D versions of this fact with respect of the complexity of our
Universe?
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Beauty of the Canvas Aspect Ratios 1.357 and 1.441

Damir Vukičević

Abstract
Recently, a collection of more than 223 thousand paintings have been
analyzed and it was established that the average aspect ratio for por-
traits is 1.357:1, and for landscape-oriented paintings is (close to)
1.441:1. Using the wisdom of the crowd theory, these two numbers
should be related to some universal beauty that surpasses individual
personal preferences. We show that indeed these values are related
to important mathematical proportions (arithmetical mean, Kepler
triangle, golden section) and that the difference between aspect ratios
of vertically and horizontally oriented paintings is related to the pe-
ripheral vision field. These aspect ratios can be used by painters and
frame manufacturers to amplify the beauty of artistic compositions
taking into consideration the psychology of perception –our ability to
innocuously register proportion as beauty. Very few real numbers are
so special, that they should be widely known in the artistic world (e.g.
golden ratio). It might be that these two numbers could deserve such
status.

1 Introduction
The goal of this paper is to try to determine if there is an optimal canvas
aspect ratio. This problem is closely related to the long-standing problem
of determining if there is aesthetically the most pleasing aspect ratio of the
rectangle sides. Fechner [9] introduced three ways to approach this problem
almost 150 years ago [13]:

1)“the method of choice (Wahl), in which subjects choose, from among
a number of alternatives, the item that they like (or dislike) the most;

(Damir Vukičević) Department of Mathematics, Faculty of Science, University of
Split, Croatia, vukicevic@pmfst.hr
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2) the method of production (Herstellung), in which subjects are asked to
draw, or otherwise create, an object of a certain kind that has features
or proportions they find most agreeable (or disagreeable);

3) the method of use (Verwendung), in which the experimenter examines
preexisting objects of the kind being studied, and determines whether
they conform to certain hypotheses about the determination of aes-
thetic pleasure.

In the same paper, Fechner concluded that the most beautiful rectangle
is a rectangle with the aspect ratio of its sides equal to the golden ratio
- two quantities are in the golden ratio if their ratio is the same as the
ratio of their sum to the larger of the two quantities. It is denoted by φ
in honor of Greek sculptor Phidias (480-430 BC), painter and architect in
whose artworks lots of instances of the golden section have been detected
and it is equal to φ =

√
5+1
2 ≈ 1.618. Euclid (300BC) started to study

its mathematical properties and since antiquity, this number has attracted
scientists and artists –it appears in the abundance of natural phenomena
and many artworks incorporate it [5, 16, 17].
Fechner’s observation will steer up quite a controversy. Very early, Scrip-
ture [22] and Woodworth’s [28] interpretation of the results of Thorndike
[26] strongly supported Fechner’s findings (nice illustrative graphs of both
findings can be seen as Figure 2 and Figure 3 in [3]. Throughout the years
many more scientists also supported this result [4, 15, 18, 21]. Partial sup-
port and partial opposition to this finding can be found in the paper [7]
where Fechner’s observation was concurred only for introverts, but dis-
puted for extroverts.
On the other hand, strong opposition to these results can be found in the
papers of Godkewitsch [12] and Green [14] which provided strong arguments
that the methodology of the previous research had some flaws. Russel [20]
finds the average, median, and mode of preferred aspect ratios of experi-
mental subjects all different from the golden section.
As a summarized conclusion of previous research, one may cite Green [13]:
“I am led to the judgment that the traditional aesthetic effects of the golden

section may well be real, but that if they are, they are fragile as well.
Repeated efforts to show them to be illusory have, in many instances, been
followed up by efforts that have restored them, even when taking the latest
round of criticism into account.”
Researchers of the most beautiful aspect ratio for the rectangle almost ex-
clusively used the first two methods that Fechner proposed (Wahl and Her-
stellung). In this paper, we will analyze what can be learned from the third
method (Verwendung). We will compare the results of these findings with
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the mathematically indicated ideal aspect ratio of canvas and obtain an
almost perfect match.

2 Methods

2.1 Wisdom of the crowd and beyond
Jeroen Visser analyzed a collection of more than 223 thousand paintings:
112476 portraits and 110611 landscape-oriented paintings in his master the-
sis [27]. He obtained that the average aspect ratio of a portrait is (height to
width) 1.357:1 and that the average ratio of a landscape-oriented painting
is (width to height) 1.45:1.
At first sight, these two numbers do not have any obvious significance. E.g.
the only ratio offered for canvas prints by Saatchi art are 1

1 = 1, 5
4 = 1.25,

4
3 ≈ 1.333 and 3

2 = 1.5, none of which is too close to these two numbers.
However, the Wisdom of the crowds theory suggests differently. This theory
starts with the famous Francis Galton observation of a cow-weight guessing
contest [11] where the average guess of cow’s weight was within 0.8% of cow’
s weight although individual guesses were mostly quite different from correct
weight. The basis of this theory is the law of large numbers first discovered
by Cardano in the 16th century which implies that if errors of individual
guesses are bounded and independent, then the error of the average will be
extremely small (for simple proof see [6] and for more details about this
theory see [25] and references within).
Suppose that a human’s sense of beauty comprises individual preference
and the objective concept of beauty. Applying the same methodology as
Galton did –i.e. averaging the senses of beauty of multiple individuals, one
might be able to distill an objective concept of beauty. If so, then ratios
1.357 : 1 and 1.45 : 1 (or ratios very close to these numbers) might have
some special status.
Let us note that in fact, the analysis of the average aspect ratio of paintings
goes beyond the wisdom of crowds. Namely, the reasonably small price
of the ticket in Galton’s experiment is quite different from producing a
painting in which the artist invests considerable time and effort. Hence,
instead of guessing, we could say that painters bet big time on the aspect
ratios (among many different painting elements) and experiments where
significant betting is included give even better results than simple averaging.
There is an old saying “Put your money where your mouth is”(and it is
used in the title of the paper Fang, Stinchcombe, and Whinston [8] that
analyzes such phenomena).
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2.2 Mathematical analysis
When observing a rectangle, there are three lengths that one may observe:
each of two sides and a diagonal. Let us denote the smaller side by s, the
larger by l, and the diagonal by d. Two most simple regularities that three
numbers can show is that the middle one is either the arithmetic mean
(average) or the geometric mean of the other two, i.e. that

l = s+ d

2
or l =

√
sd.

Considering that the Pythagorean theorem implies that d2 = l2 +s2, simple
calculation shows that arithmetic mean implies that

s : l : d = 3 : 4 : 5.

This is the smallest Pythagorean triple (a reader interested in Pythagorean
triples is referred to [23]. Calculation using geometric mean implies that

s : l : d = 1 : √
φ : φ,

where φ =
√

5+1
2 ≈ 1.618 is the golden ratio. The triangle with side ratios

1 : √
φ : φ is called the Kepler triangle. Kepler was fascinated by this

peculiar connection of golden ratio and Pythagorean theorem stating that:
“Geometry has two great treasures: one is the theorem of Pythagoras, the

other the division of a line into extreme and mean ratio. The first we may
compare to a mass of gold, the second we may call a precious jewel”[10].
Hence, we have two important rectangles –one with the side ratio √

φ ≈
1.272 and the other with the side ratio 4

3 ≈ 1.333. Note that when an ob-
server faces a piece of art, he does not face unframed canvas, but framed
canvas. Hence, one might wonder what should be the ratio of unframed
canvas that would produce a ratio of framed canvas 1.272 and 1.333. Ob-
viously, this depends on the width of the frame. Hence, one might ask if
the canvas is given is there some method of calculating the optimal width
of the frame?
One of the possible ways is to put such a frame that incorporates nice
proportions. We have three areas: unframed canvas area (let us denote it
by u), frame area (let us denote it by f), and total framed painting area
(which is equal to u+ f). Hence, it can be required that

u : f = (u+ f) : u.

Then, (u+ f) : u is the golden ratio. Such choice of frame width is already
advised by many makers of custom-made frames (e.g. see [1, 2]). Let us
call such framing golden framing. Let us define the function g : 〈1,+∞〉 →
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〈1,+∞〉 that we call the golden lift. Its input argument is ratio x of the
longer side of a framed picture to its shorter side and its result is the ratio
g(x) of the longer side of the canvas to the shorter when golden framing is
applied. Let us denote the width of the frame by w(x). It holds that

[g(x) + 2w(x)] · [1 + 2w(x)] = φ [g(x) · 1] ; (2.1)
[g(x) + 2w(x)] : [1 + 2w(x)] = x. (2.2)

From (2.2), we get
w(x) = g(x) − w

2x− 2
.

Inserting in (2.1), we get(
g(x) + 2g(x) − x

2x− 2

)(
1 + 2g(x) − x

2x− 2

)
= φ · g(x)

which is equivalent to:

(g(x))2 −
(

2 + φx+ φ

x
− 2φ

)
g(x) + 1 = 0.

Solving it for g(x), we get:

g(x) =
2 + φx+ φ

x − 2φ±
√(

2 + φx+ φ
x − 2φ

)2 − 4
2

.

The solution with the minus sign gives g(x) < 1 which is incorrect. Hence,

g(x) =
2 + φx+ φ

x − 2φ+
√(

2 + φx+ φ
x − 2φ

)2 − 4
2

.

Now we have g(√φ) ≈ 1.357 and g(4
3) ≈ 1.441.

3 Results and discussion
Note that g(√φ) coincides in all four digits with the average ratio of the
longer to shorter side of the canvas for portraits calculated in [27]. This
kind of agreement can hardly be accidental. Hence, two completely differ-
ent approaches provide the same result. This number g(4

3) is 0.6% less than
the average of the ratio of longer to shorter side for all landscape-oriented
paintings. Hence, there is almost a perfect match. One reason for the
small discrepancy is that the aspect ratios of the painting are sometimes di-
vided into three groups (portrait, square, landscape), and sometimes in four
groups (portrait, square, landscape, and panoramic). Hence, the wisdom of
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the crowd might not imply the result of 1.45, but slightly less than 1.45.
This would be in accordance with the calculated value of g(4

3) ≈ 1.441.
The remaining interesting question is why there is a difference between the
average ratio of portraits and landscape-oriented paintings and the answer
might be rooted in the shape of the peripheral visual field. Namely, the pe-
ripheral visual field is horizontally elongated (see Figure 6 in [19] or detailed
review [24] and references within). Hence, for landscape orientation, an ob-
vious choice is the larger of these two possibilities (hence indeed: 1.441),
and for portrait smaller of these values (hence indeed: 1.357).
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Abstract
Graph theory is an extremely diverse field with wide applications to-
day. Graphs have proven to be an excellent tool for modeling systems,
emphasizing connections and relationships between objects. In graph
theory, matching is a fundamental concept used to describe a set of
edges without common vertices. Understanding them is essential for
solving problems involving efficient routing and resource allocation.
In this work, we enumerate maximal matchings and determine the
saturation and matching number in book graphs, which are suitable
for representing certain configurations of computer networks.

Keywords: cycle related graphs, book graph, maximal matching, satura-
tion number, matching number.
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1 Introduction
Graph theory is an extremely diverse field with wide applications today.
Graphs have proven to be an excellent tool for modeling systems empha-
sizing connections and relationships between objects. If we pay attention,
we will notice that the problems studied by graph theory are everywhere
around us. In this paper, we will show the properties of book graphs that
are inspired by a type of network topology.

A graph G(V,E) is a pair of two sets, V and E, V = V (G) being a finite
nonempty set and E = E(G) is a binary relation defined on V . A graph
can be visualized by representing the elements of V by points (vertices) and
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joining pairs of vertices (i, j) by an edge (bond) if and only if (i, j) ∈ E(G).
The number of vertices in G equals the cardinality n = |V (G)| of this set.
The degree of a node in a non-directed graph is defined as the number of
links a node has with other nodes.
We assume that the reader is familiar with basic graph-theoretic concepts
such as degree, neighborhood, etc., and with basic classes of graphs such
as paths, cycles, and complete graphs. Here we denote by Pn a path on n
edges (n + 1 vertices) and by Cn a cycle on n vertices. All graphs in this
paper are finite, simple, and undirected. Terms not defined here are used
in the sense of Harary [4].

In graph theory, matching is a fundamental concept used to describe a set
of edges without common vertices. Matchings are used in various applica-
tions such as network design (efficient routing and resource allocation), job
assignments (assigning jobs to machines or workers), scheduling (optimal
scheduling of tasks), chemistry, graph coloring, neural networks in artifi-
cial intelligence, and more. The cardinality of M is called the size of the
matching. As the matchings of small sizes are not interesting, we will be
mostly interested in matchings that are as large as possible. A matching
M is maximum if there is no matching in G with more edges than M . The
cardinality of any maximum matching in G is called the matching number
of G and denoted by ν(G). Since each vertex can be incident to at most
one edge of a matching, it follows that the matching number of a graph on
n vertices cannot exceed

⌊
n

2

⌋
.

The matching M is perfect if each vertex of G is incident with an edge of
M . Perfect matchings (also known in chemistry as Kekulé structures) are
also maximum matchings [5].
There is another way to quantify the idea of ”large” matching. A match-
ing M in G is maximal if no other matching in G contains it as a proper
subset. Obviously, every maximum matching is also maximal, but the op-
posite is generally not true. Maximal matchings are much less researched
with respect to both their structural and enumerative properties. Maximal
matchings can serve as models of several technical problems such as the
block-allocation of a sequential resource. The cardinality of any smallest
maximal matching in G is the saturation number of G. The saturation
number of a graph G we denote by s(G). It is easy to see that the satu-
ration number of a graph G is at least one-half of the matching number of
G, i.e., s(G) ≥ ν(G)/2. Hence, the saturation number provides a piece of
information on the worst possible case.

Network topology refers to the arrangement and interconnection of vari-
ous components within a (computer) network, including nodes (computers,
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Figure 1: Multiple Ring Networks with Shared Link

switches, routers) and links (wired or wireless connections). It defines how
these components are connected and interact with each other. Physical
topology refers to the placement of the network’s various components, in-
cluding the device locations and cable installation, while logical topology
shows how data flows within the network, regardless of its physical de-
sign [3].
The structure of a network topology determines how data is transmitted, af-
fecting the network’s performance, reliability, and scalability. An efficiently
designed topology can reduce cable costs, enhance data transfer speeds,
and improve network reliability. On the other hand, a poorly thought-out
topology can lead to congested data paths and increased risk of network
failures. For organizations, choosing the right topology is a key part of net-
work planning, as it affects both the operational efficiency and the ease of
future expansion. The landscape of network topology is diverse, offering
various configurations, each with its unique characteristics and suitability
for different network scenarios.

The primary types of network topology include: Point-to-Point (represented
by path graph), Bus Topology (caterpillar), Star (star graph), Ring (cy-
cle graph), Tree (tree graph), Mesh (with each node having a connection
to several other nodes), Hybrid (combines two or more different types of
topologies).
In this paper, we are concerned with graphs representing one possible net-
work topology, the Multiple Ring Network with Shared Link. The shape
of that topology can be represented by a graph we call a book graph. We
represent the components, nodes (computers, switches, routers) by vertices
and links (wired or wireless connections) by edges of certain graphs. Book
graphs consist of a certain number of cycles, not necessarily of the same
length, which all share one common edge. The cycle lengths are at least
three. See examples in Fig.2.
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Figure 2: A book graph a) B(2, 1) with 2 sheets b) B(3, 2) with 3 sheets

2 Maximal matchings in book graphs

In this section, we state and prove our main results about the number of
maximal matchings in book graphs. We refer the reader to [4] for all graph-
theoretical terms not defined here.

A book graph B = B(n, k) is a graph with nk + 2 vertices, consisting of
n cycles Ck+2, that all share exactly one common edge. Let us denote
the vertices of the common edge with u and w. The other vertices we
denote with v11, ..., v1k, v21, ..., v2k, ...vn1, ..., vnk, where the first label, say m,
indicates the cycle, and the second label indicates the position of a vertex
in the m-th cycle. In all cycles, the second vertex labels are increasing when
proceeding along the cycle from u to w. See Figure 3. In order to avoid
problems with too few, or with too short cycles, we restrict our attention to
n ≥ 2 and k ≥ 3. We denote the number of maximal matchings in B(n, k)
by Ψ(n, k).
First, we settle the two shortest cases, k = 1 and k = 2.

Lemma 2.1. Let n ≥ 2. Then the number of maximal matchings in B(n, 1)
is given by

Ψ (n, 1) = n(n− 1) + 1, (2.1)
and the number of maximal matchings in B(n, 2) is given as

Ψ (n, 2) = n2 + 1. (2.2)

Proof. We start with an observation, valid also for k ≥ 3, that any maximal
matching must cover at least one of the vertices u and w. The number of
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Figure 3: A book graph B(n, k)

maximal matchings in B(n, 1) in which both u and w are covered by the
same edge, hence uw, is exactly one. If u and w are covered by different
edges, the edge covering u can be chosen in n ways, leaving n−1 possibilities
to choose the edge covering w, since those edges cannot belong to the same
cycle. Since it is not possible to have either one of u and w uncovered by a
maximal matching, we have exhausted all possibilities and the total number
of maximal matchings in B(n, 1) is equal to n(n− 1) + 1, as claimed.
The number of maximal matchings in B(n, 2) covering both u and w by
the same edge is again 1. If those vertices are covered by different edges,
there are n · n = n2 such possibilities. Again, it is not possible to have
just one of them covered by a maximal matching, a consequence of random
matchability of cycles C4 making the sheets of the considered books. Hence,
Ψ (n, 2) = n2 + 1, as claimed in the statement.

Both sequences Ψ(n, 1) and Ψ(n, 2) appear in the On-Line Encyclopedia of
Integer Sequences [1], Ψ(n, 1) as A002522, and Ψ(n, 2) as A002061. Both
have a number of other combinatorial interpretations, but maximal match-
ings are not among them. It would be an interesting exercise to construct
explicit bijections between some of those interpretations and our maximal
matchings.

Before we consider the general case, we notice for that any maximal match-
ing in B(n, k) covering both u and w, the remaining graph decomposes into
a disjoint union of paths of the same, or almost same, length. Hence, we
quote a result on the number of maximal matchings in paths [2].
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Proposition 2.2 ( [2]). Let ψk denote the number of maximal matchings
in Pk. The sequence ψk satisfies the linear recurrence

ψk = ψk−2 + ψk−3,

with the initial conditions ψ0 = ψ1 = ψ2 = 1.

The enumerating sequence of the number of maximal matchings in Pk is
the (shifted) Padovan sequence, sequence A000931 from [1]. We invite the
reader to refer to OEIS for other combinatorial representation of this se-
quence.
The above lemma will be useful also for the case when only one of u and w
is covered by a maximal matching. In that case, all neighbors of the other
one must be covered, and the graph again decomposes into several disjoint
paths, their length again quite similar.

Proposition 2.3. The sequence Ψ(n, k) is given by

Ψ(n, k) = ψn
k + nψk−2 ψ

n−1
k + n(n− 1)ψ2

k−1 ψ
n−2
k + 2n(n− 1)ψk−3 ψ

n−1
k−2 ,

for n ≥ 2, k ≥ 3, where ψk denotes the number of maximal matchings in Pk.

Proof. As mentioned before, any maximal matching in B(n, k) must cover
at least one of the vertices u and w. We first look at the case when it covers
both of these vertices. The number of maximal matchings covering them
with the edge uw is the number of maximal matchings in B(n, k)\{u,w}.
This graph is a disjoint union of n paths Pk, each of them has ψk maximal
matchings. Therefore, the number of maximal matchings covering vertices
u and w by the same edge is equal to

ψn
k . (2.3)

Let us now consider the case when u and w are covered by different edges in
a maximal matching. If both of these edges are in the same cycle, say uvl1
and wvlk, what remains when we remove them, is a disjoint union of n− 1
copies of Pk and one copy of Pk−2. The number of maximal matchings in
that case is ψn−1

k ψk−2. Since there are n possibilities for choosing the cycle
in which the edges covering u and w are, the total number of such maximal
matchings is

nψk−2 ψ
n−1
k . (2.4)

In the same way, we can conclude that the number of maximal matchings
in which u and w are covered by edges from different cycles is equal to

n(n− 1)ψ2
k−1 ψ

n−2
k . (2.5)
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The last possible case is that the maximal matching covers only one of the
vertices u and w, say u. Let it be covered by the edge uvl. Then all the
neighboring vertices of w must be covered by edges v1kv1,k−1, ..., vnkvn,k−1.
So, we have one copy of Pk−3 and n− 1 copies of Pk−2, with n such possible
situations, so we have nψk−3ψ

n−1
k−2 maximal matchings that cover only u. By

symmetry, there are exactly as many maximal matchings that cover only w,
so the number of maximal matchings that cover only one of the vertices u
and w is equal to

2nψk−3 ψ
n−1
k−2 . (2.6)

Now we get the total number of maximal matchings in B(n, k) for n ≥
2, k ≥ 3 by summing all possible cases.

For the same reason, as in the proof for maximal matchings, we state the
result for saturation number, where n denotes the number of vertices [2],

s(Pn) =
⌊n+ 1

3

⌋
(2.7)

and matching number for paths

ν(G) =
⌊n

2

⌋
. (2.8)

Proposition 2.4. Saturation number for graph B(n, k) is equal to

s(B(n, k)) =

 (n− 1)
⌊

k−1
3

⌋
+
⌊

k−2
3

⌋
, if k ≥ 3

2
⌊

k
3

⌋
+ (n− 2)

⌊
k+1

3

⌋
, if k = 2.

Proof. Let’s consider all possible cases. Any maximal matching in B(n, k)
must cover at least one of the vertices u and w.
We first look at the case when it covers both of these vertices. This graph
is a disjoint union of n paths Pk, and each of them has saturation number
s(Pk) =

⌊
k+1

3

⌋
. Therefore, saturation number in this case is equal to

n

⌊
k + 1

3

⌋
+ 1 (2.9)
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In the case when u and w are covered by different edges we have two options.
If both of these edges are in the same cycle, for the disjoint union of n− 1
copies of Pk and one copy of Pk−2 saturation number is equal

(n− 1)
⌊
k + 1

3

⌋
+
⌊
k − 1

3

⌋
(2.10)

In the same way, we can conclude that the saturation number in case when
u and w are covered by edges from different cycles is equal to

2
⌊
k

3

⌋
+ (n− 2)

⌊
k + 1

3

⌋
(2.11)

If the maximal matching covers only one of the vertices u and w, then we
have one copy of Pk−3 and n − 1 copies of Pk−2, so the saturation number
is equal to

(n− 1)
⌊
k − 1

3

⌋
+
⌊
k − 2

3

⌋
, (2.12)

which is also the smallest possible value for saturation number. For k = 2
formulas (11) and (12) give the same value.

By analogical consideration it can be easily shown that the formula for
matching number in B(n, k) is given by the following proposition.

Proposition 2.5.
ν(B(n, k)) = n

⌊
k

2

⌋
+ 1.

Proof. In the first case when maximal matching covers both of joint vertices,
and graph is a disjoint union of n paths Pk, is also maximum matching in
B(n, k).

3 Concluding remarks
In this paper we have enumerated maximal matchings in a class of cycle
related graphs, interesting from the viewpoint of topology of computer net-
works. Our results could be generalized in a straightforward way to similar
network configurations, in particular to multiple ring networks sharing a
single node, and we leave it to the interested reader. For both types of
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networks, several interesting problems remain unanswered. Of particular
interest would be to compare the results for two cycles with a larger num-
ber of vertices compared to cases with multiple cycles with a smaller number
of vertices. Some preliminary investigations are underway and we hope to
be able to report conclusive results soon.
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