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Abstract
In a recent paper, it was determined that the total number of di-
visions of a narrow hexagonal strip is counted by odd-indexed Fi-
bonacci numbers. In this paper, we consider two division problems
on narrow strips of square and hexagonal lattices. In both cases, we
compute the bivariate enumerating sequences and the corresponding
generating functions, which allowed us to determine the asymptotic
behavior of the total number of such subdivisions and the expected
number of parts. For the square case, we extend the results of two
recent references by establishing the polynomiality of enumerating se-
quences forming columns and diagonals of the triangular enumerating
sequence. In the hexagonal case, we provide an alternative proof for
the number of divisions. We also show how both cases could be treated
via the transfer matrix method and discuss some directions for future
research.

1 Introduction
It has been a long-standing problem of great practical importance to count
the ways of dividing a collection of entities into smaller sets according to
a given set of rules. If the entities are considered to be indivisible, and
we only care about their number, the natural framework for modeling such
situations is the theory of integer partitions and compositions, depending on
further properties of the considered entities. If, on the other hand, we are
interested in relationships between the entities, such as e.g., their adjacency
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patterns or their relative positions, we must resort to more complex models
such as graphs and geometric figures.
In this paper, we look at finite portions of the square and hexagonal regu-
lar lattices and count ways of dividing narrow strips in such lattices into a
given number of pieces while preserving the integrity of individual squares or
hexagons. The considered portions of square and hexagonal lattices remind
us of chocolate bars and honeycomb slabs, respectively, hence the title. We
start by revisiting some partial results for narrow strips in the square lattice
available in the literature and present a complete solution to the problem.
In particular, we derive the recurrences satisfied by the sequences enumer-
ating the divisions of a 2 × n strip into k pieces. From them, we compute
the bivariate generating function whose univariate specialization yields the
recurrence for the overall number of divisions. In that way, we recover the
results of Knopfmacher obtained in the context of compositions of ladder
graphs [5]. We refine those results by investigating the behavior of columns
in the enumerating triangle. We establish convolution-type recurrences for
all columns, going thus beyond partial results of references [2, 4, 7]. Then
we apply the same approach to narrow strips of hexagons, again deriving
the recurrences and computing the bivariate generating function. Then we
show how the results for honeycomb strips can be obtained by using trans-
fer matrices. Finally, we also derive transfer matrices for the chocolate bars
from which we started.
The paper is concluded with some remarks on the strong and weak points of
employed methods and with some indications of possible further directions.

2 Definitions and preliminary results
Let n be a non-negative integer. We consider a 2 × n rectangular strip
consisting of 2n squares arranged in 2 rows and n columns, such as the one
shown in Fig. 1. In the rest of the paper, we will often refer to such strips as
chocolate bars of length n. We consider divisions of such structures into a
given number of pieces obtained by cutting along the edges of basic squares.
More precisely, we would like to find the number of all possible divisions of
such a bar of a given length, and also the number of such divisions into a
given number of parts k. Clearly, 1 ≤ k ≤ 2n are the only meaningful values
of k. Let rk(n) denote the number of divisions of 2 × n rectangular strip
into exactly k pieces and r(n) the total number of divisions. From definition
we have that rk(n) = 0 for k < 1 and for k > 2n. The initial values are
r1(1) = r2(1) = 1, and r1(2) = 1, r2(2) = 6, r3(2) = 4 and r1(4) = 1.
In a recent paper, Brown [2] studied such divisions and obtained a system of
recursive relations that we include below as Theorem 2.1. In order to state
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Figure 1: Rectangular strip containing 2n squares.

Brown’s results, we need one auxiliary term, more specifically, the number
of divisions of a 2×n rectangular strip into k parts such that the squares in
the last column belong to different parts. We denote that number by qk(n)
and show one such division in Figure 2 as an example.

Figure 2: One division of 2 × 6 rectangular strip into 5 parts with squares
in the last column being in the different parts. The total number of such
divisions is denoted by q5(6).

Theorem 2.1 (Brown). The number of divisions of 2 × n strip into k parts
satisfies following system of equations:

rk(n + 1) = rk(n) + 3rk−1(n) + rk−2(n) + 2qk(n)
qk(n + 1) = 2rk−1(n) + rk−2(n) + qk(n).

It is an easy exercise to eliminate qk(n) from the system of equations in
Theorem 2.1 and to obtain recursive relations for rk(n),

rk(n+1) = rk−2(n)+3rk−1(n)+2rk(n)+rk−2(n−1)+rk−1(n−1)−rk(n−1),
(2.1)

and for the overall number of such divisions,

r(n + 1) = 6r(n) + r(n − 1). (2.2)

These recurrences will serve as the starting point of our Section 3, where
Brown’s results will be extended and refined by establishing recurrences in
n for a fixed k and by computing the expected values of k in a random
division of a 2 × n chocolate bar.
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Next, we consider a hexagonal strip composed of n regular hexagons as
shown in Figure 3. Throughout the paper, such hexagonal strips will also be
referred to as honeycomb strips. The number to divide hexagonal strips with
n hexagons into exactly k parts is given by

(n+k−2
n−k

)
while the overall number

of divisions is F2n−1, where Fn stands for the nth Fibonacci number [3].
Here we present recurrences, generating functions, and again, only divisions
along the edges of hexagons are considered. The hexagons are added in the
order as it is shown in Figure 3.

2

1
4

3 5

6 8 10

7 11 9

12

Figure 3: Honeycomb strip with 12 hexagons divided into 5 pieces.

Let Dk(n) denote the set of all possible divisions of the honeycomb strip
with n hexagons into k pieces and dk(n) = |Dk(n)| the number of elements
of the set Dk(n). Now we can state some simple cases: d1(n) = 1, for every
non-negative integer n, since there is only one way to obtain one part, and
dn(n) = 1, since there is only one way to obtain n parts, that is to let
each hexagon form its own part. Furthermore, dk(n) = 0 for k < 1 and for
k > n. It is convenient to set d1(0) = 1. As an example, we list all possible
divisions of the strip containing 4 hexagons as the first non-trivial case.

d1(4) = 1 {1234}
d2(4) = 6 {1, 234} , {2, 134} , {3, 124} , {4, 123} , {12, 34} , {13, 24}
d3(4) = 5 {12, 3, 4} , {13, 2, 4} , {23, 1, 4} , {24, 1, 3} , {34, 1, 2}
d4(4) = 1 {1, 2, 3, 4}

Note that the division {14, 23} is not included, since hexagons 1 and 4 are
not adjacent, as shown in Figure 4, thus cannot form a part.
Since the inner dual of a 2 × n rectangular strip is a subgraph of the inner
dual of a hexagonal strip of length 2n, all divisions of a 2 × n rectangular
strip are also valid divisions of a hexagonal strip with 2n hexagons, but
not vice versa. Figure 5 shows the division {1, 23, 4} which is legal in the
hexagonal strip but illegal in the rectangular strip.
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Figure 4: Divisions of the strip with 4 hexagons.

3 Dividing a chocolate bar into a given number of
parts

Numbers rk(n) of (2.1) form a triangular array; its first few lines are shown
in Table 1. In this section, we investigate the behavior of its columns, i.e.,
we turn our attention to recursive relation for rk(n) where k is fixed.
As mentioned before, r0(n) = 0 and r1(n) = 1, so we look at the first
non-trivial case, k = 2. From relation (2.1) we obtain r2(n) = r0(n − 1) +
3r1(n − 1) + 2r2(n − 1) + r0(n − 2) + r1(n − 2) − r2(n − 2). By plugging in
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Figure 5: A valid division of a honeycomb strip on the left, and the corre-
sponding division of a rectangular grid that is not allowed on the right side.

n\k 1 2 3 4 5 6 7 8 9 10

1 1 1
2 1 6 4 1
3 1 15 29 21 7 1
4 1 28 107 153 111 45 10 1
5 1 45 286 678 831 603 274 78 13 1

Table 1: First few rows of rk(n).

r0(n − 1) = r0(n − 2) = 0 and r1(n − 1) = r1(n − 2) = 0, we obtain

r2(n) =2r2(n − 1) − r2(n − 2) + 4
r2(n − 1) =2r2(n − 2) − r2(n − 3) + 4,

and by subtracting these two equations, we arrive at

r2(n) = 3r2(n − 1) − 3r2(n − 2) + r2(n − 3). (3.1)

Rewriting the trivial case

r1(n) = r1(n − 1) (3.2)

as (
1
0

)
r1(n) =

(
1
1

)
r2(n − 1), (3.3)

and case k = 2 as(
3
0

)
r2(n) =

(
3
1

)
r2(n) −

(
3
2

)
r2(n − 1) +

(
3
3

)
r2(n − 2) (3.4)

suggests that there is a pattern valid also for higher values of k. The con-
jectured pattern is readily verified by induction, thus yielding the following
theorem.

16



Divisions of narrow strips in square and hexagonal lattices

Theorem 3.1. For integers n, k ≥ 1 we have
2k−1∑
j=0

(−1)j

(
2k − 1

j

)
rk(n − j) = 0. (3.5)

Proof. The proof is by induction. For k = 1, 2, the base of induction is true,
as stated above. To verify the step of induction, we use recursion (2.1) to
obtain a system of 2k − 2 equations as follows:

rk(n) = rk−2(n − 1) + 3rk−1(n − 1) + 2rk(n − 1)+
+ rk−2(n − 2) + rk−1(n − 2) − rk(n − 2)

rk(n − 1) = rk−2(n − 2) + 3rk−1(n − 2) + 2rk(n − 2)+
+ rk−2(n − 3) + rk−1(n − 3) − rk(n − 3)

rk(n − 2) = rk−2(n − 3) + 3rk−1(n − 3) + 2rk(n − 3)+
+ rk−2(n − 4) + rk−1(n − 4) − rk(n − 4)

...
rk(n − 2k + 3) = rk−2(n − 2k + 2) + 3rk−1(n − 2k + 2) + 2rk(n − 2k + 2)+

+ rk−2(n − 2k + 1) + rk−1(n − 2k + 1) − rk(n − 2k + 1)

The term rk(n−j) appears in at most three equations, namely in the (j−1)st,
jth and (j + 1)st equation. To proceed forward, we multiply j-th equation
by (−1)j

(2k−3
j−1

)
and we add up all equations. For even j, the term rk(n − j)

appears with the coefficient(
2k − 3
j − 2

)
+ 2

(
2k − 3
j − 1

)
+
(

2k − 3
j

)
=
(

2k − 1
j

)
,

and for odd j with the same coefficient, but with the opposite sign. We
conclude that

rk(n) =
2k−1∑
j=1

(−1)j

(
2k − 1

j

)
rk(n − j) + Ak−1(n) + Ak−2(n), (3.6)

where Ak−1(n) and Ak−2(n) are some expressions involving rk−1(n − j) and
rk−2(n − j), respectively. The claim of the theorem will be established if
we show that both Ak−1(n) and Ak−2(n) are equal to zero. We first look
at Ak−1(n). For j ≥ 1, the term rk−1(n − j) appears twice in our system
of equations, in the (j − 1)st and in the jth equation, hence, the coefficient
by rk−1(n − j) is

(2k−3
j−2

)
− 3

(2k−3
j−1

)
for an odd j, and 3

(2k−3
j−1

)
−
(2k−3

j−2
)

for an
even j. So,

Ak−1(n) =
2k−1∑
j=1

(−1)j

(
3
(

2k − 3
j − 1

)
−
(

2k − 3
j − 2

))
rk−1(n − j).
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For k − 1 we can use the induction hypothesis, hence

3
2k−3∑
j=0

(−1)j

(
2k − 3

j

)
rk−1(n − j − 1) = 0

and
2k−3∑
j=0

(−1)j

(
2k − 3

j

)
rk−1(n − j − 2) = 0.

After adding the equations, we have

0 = 3
2k−3∑
j=0

(−1)j

(
2k − 3

j

)
rk(n − j − 1) +

2k−3∑
j=0

(−1)j

(
2k − 3

j

)
rk(n − j − 2)

= 3
2k−2∑
j=1

(−1)j−1
(

2k − 3
j − 1

)
rk(n − j) +

2k−1∑
j=2

(−1)j

(
2k − 3
j − 2

)
rk(n − j)

=
2k−1∑
j=1

(−1)j

((
2k − 3
j − 2

)
− 3

(
2k − 3
j − 1

))
rk(n − j),

hence, Ak−1(n) = 0.
Similarly, Ak−2(n) can be expressed as

Ak−2(n) =
2k−1∑
j=1

(−1)j

((
2k − 3
j − 1

)
−
(

2k − 3
j − 2

))
rk−2(n − j),

and, again, by using the induction hypothesis for k−2, we obtain Ak−2(n) =
0. The proof follows along the same lines as for Ak−1(n) = 0, and we omit
the details.
This completes our proof.

Theorem 3.1 implies that all columns of the array rk(n) are polynomials
in n. Moreover, rk(n) is a polynomial in n of degree 2k − 2. The exact
expressions can be easily obtained by fitting to the initial values, but we
omit the details. Our Theorem 3.1 reestablishes the polynomiality results
of references [2] and [4] in a more compact and self-contained form.
A similar reasoning could also be employed near the upper end of the range
of k and used to establish polynomiality of diagonals r2n−k(n), going thus
beyond the results of references [2, 4]. Indeed, r2n(n) = 1 for all non-
negative integers n. Furthermore, r2n−1(n) = 3n − 2, since among the
2n − 1 pieces there must be exactly one dimer. That dimer is an edge in
the inner dual of our bar, hence an edge in a ladder graph with n rungs,
and there are exactly 3n − 2 such edges. In a similar way, one can see that
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r2n−2(n) must be a quadratic polynomial in n: A division into 2n − 2 parts
can either contain one trimer and 2n − 3 monomers, or two dimers and
2n − 4 monomers. As the number of trimers is linear in n and the number
of pairs of dimers is quadratic in 3n, by fitting on the first few values for
small n one obtains r2n−2(n) = 9

2(n − 1)(n − 2
3). By continuing with the

same reasoning, one obtains a general result.

Theorem 3.2. r2n−k(n) is a polynomial of degree k in n with the leading
coefficient 3k

k! .

We leave the details to the interested reader.
We now move towards computing the bivariate generating function for rk(n).
Let

F (x, y) =
∑
n≥1

∑
k≥1

rk(n)xnyk

denote the desired generating function. By starting from recurrence (2.1)
we readily obtain

F (x, y) = xy(1 − x + y + xy)
1 − (2 + 3y + y2)x − (y2 + y − 1)x2 .

By substituting y = 1 we obtain

F (x, 1) = 2x

1 − 6x − x2 ,

the univariate generating function for the sequence rn.
Now we can determine the expected number of pieces in a random division.
We rely on the following version of Darboux’s theorem [1].

Theorem 3.3 (Darboux). If the generating function f(x) =
∑

n≥0 an
x of

a sequence (an) can we written in the form f(x) =
(
1 − x

ω

)α
h(x), where

ω is the smallest modulus singularity of f and h is analytic in ω, then
an ∼ h(ω)n−α−1

Γ(−α)ωn , where Γ denotes the gamma function.

Since ω =
√

10 − 3 we can write

F (x, 1) = 2x

x
(√

10 − 3
)

+ 1

1 − x(√
10 − 3

)
−1

.

Hence, we have h(x) = 2x

x
(√

10 − 3
)

+ 1
and h(ω) =

√
10

10 . Furthermore,

∂F (x, y)
∂y

∣∣∣∣
y=1

= −x(x3 + 3x2 + 7x − 3)(
x
(√

10 − 3
)

x + 1
)2

1 − x(√
10 − 3

)
−2
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yields g(x) = −x(x3+3x2+7x−3)
(x(√

10−3)x+1)2 and g(ω) = 3
√

10−4
20 . By Theorem 3.3, the

expected number of parts is

g(ω)n
Γ(2)ωn

h(ω)
Γ(1)ωn

=
(

3
2

−
√

2
5

)
n.

Hence, we have established the following result for the expected number of
parts in a random division of a chocolate bar of length n.

Theorem 3.4. The expected number of parts in a random division of a
chocolate bar of length n is given by(

3
2

−
√

2
5

)
n ≈ 0.867544 n.

The above result is derived under the so-called equilibrium assumption,
where all divisions are equally likely.
The triangle of Table 1 is not (yet) in the OEIS [6]. However, its row sums
appear as A078469, the number of compositions of ladder graphs in the sense
of reference [5]. Hence, our results could also be interpreted as a refinement
of the number of compositions of ladder graphs. Sequence r3(n) appears
as A345897, with the same interpretation as we give here. Curiously, such
an interpretation seems to be missing among many combinatorial interpre-
tations of A000384, the hexagonal numbers, which appear as the second
column of our triangle. Similarly, r2n−2(n) appears as A081266, but with-
out the interpretation given here.

4 Divisions of honeycomb strips

4.1 Recurrences, explicit formulas and generating functions
Recall that Dk(n) denotes the set of all possible divisions of the honeycomb
strip with n hexagons into k pieces, and dk(n) = |Dk(n)| is the number of
elements of the set Dk(n). In order to count the divisions correctly, special
attention must be paid to the rightmost two cells, since the new (n + 1)st

cell can interact only with them. Whether these hexagons are in the same
pieces or not plays a crucial role in how the new hexagon can be added. We
denote by Sk(n) the set of all possible divisions of the honeycomb strip with
n hexagons into k pieces, with the last two hexagons in the different parts.
Similarly, let Tk(n) denote the set of all possible divisions of the strip into
k pieces with the two rightmost hexagons belonging to the same piece. Let
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sk(n) = |Sk(n)| and tk(n) = |Tk(n)|. Since the last two hexagons can either
be together or separated, we have divided the set Dk(n) into two disjoint
sets, Dk(n) = Sk(n) ∪ Tk(n), hence dk(n) = tk(n) + sk(n).

Figure 6: A honeycomb strip with two rightmost hexagons in the same
piece.

Figure 7: A honeycomb strip with two rightmost hexagons in different
pieces.

We first establish an auxiliary result.

Theorem 4.1. For n ≥ 1, the number of all possible divisions sk(n) of the
honeycomb strip with n hexagons into k pieces, with hexagons in the last
column being in the different pieces, satisfies the following relation:

sk(n + 1) = sk−1(n) + 2sk(n) − sk(n − 1). (4.1)

Proof. We start with a strip containing n hexagons and add one new
hexagon to obtain a strip with n + 1 hexagons. The new hexagon can
either increase the number of parts in the division by 1 or not increase this
number. To obtain a division with k pieces, we can only start with the
division with k − 1 or k pieces. These are two disjoint sets, so the number
of all divisions will be the sum of these cases.
When starting with division consisting of k−1 pieces, we can obtain k pieces
by adding the new hexagons as individual pieces. Since there is only one
way to do that, the number of divisions that can be obtained this way is
dk−1(n). Note that the condition that the rightmost two hexagons belong
to different pieces is satisfied, as shown in Figure 8.
It remains to consider one last case. We start with a strip divided into
k pieces and we add (n + 1)st hexagon. If the last two hexagons in the
division are together, we cannot add new hexagons so that the number of
parts remains the same, and the new hexagons are in different pieces.
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n + 1

n

Figure 8: The element of Sk(n + 1) obtained from the element of Dk−1(n)
by adding the new hexagon as separated piece.

Now we move to the case where the last two hexagons in the division are
separated. There is only one way to add new hexagons to the existing strip,
to put the (n + 1)st hexagon together with (n − 1)st (see Figure 9). Every
other layout would be in contradiction with either the number of pieces
or the fact that the last two hexagons should be separated, since putting
(n + 1)st hexagon together with nth hexagon would produce the element of
Tk(n). So in this case, we have sk(n) ways to obtain the desired division.

n − 1 n + 1

n

Figure 9: The element of Sk(n + 1) obtained from the element of Sk(n) by
joining the new hexagon with (n − 1)st hexagon

By summing these two cases, we obtain the recursive relation

sk(n + 1) = dk−1(n) + sk(n). (4.2)

To eliminate dk−1(n) from relation (4.2), we use the fact that dk−1(n) =
tk−1(n)+sk−1(n). By removing the last hexagon from the strip, we establish
a 1-to-1 correspondence between all divisions of a strip with n − 1 hexagons
and divisions of a strip with n hexagons where the last two hexagons are in
the same part. Hence, tk(n) = dk(n − 1). Then we have

sk(n + 1) = sk−1(n) + tk−1(n) + sk(n)
= sk−1(n) + dk−1(n − 1) + sk(n),

hence dk−1(n − 1) = sk(n + 1) − sk−1(n) − sk(n), which combined with
relation (4.2) yields

sk(n + 1) = sk−1(n) + 2sk(n) − sk(n − 1)

and we proved the theorem.
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By disregarding values of k in recursive relation 4.1 we obtain

s(n + 1) = 3s(n) − s(n − 1),

where s(n) represents the number of all divisions of a honeycomb strip of
length n with the last two hexagons in different parts. Since we obtained the
same recursive relation as for bisection of Fibonacci sequence with s(1) = 0
and s(2) = 1, we have

s(n) = F2n−2.

Our main result of this section now follows by much the same reasoning as
dk(n) satisfies the same recurrence as sk(n). We state it without proof.

Theorem 4.2. For n ≥ 1, the number of all possible divisions dk(n) of n
honeycomb strip into k pieces satisfies the following relation:

dk(n + 1) = dk−1(n) + 2dk(n) − dk(n − 1). (4.3)

Again, by grouping terms of recurrence 4.3 with respect to n, we obtain
the recurrence satisfied by the sequence d(n) counting the total number of
subdivisions of a honeycomb strip of length n as

d(n + 1) = 3d(n) − d(n − 1).

Taking into account the initial conditions d(1) = 1 and d(2) = 2 yields a
very simple answer.

Theorem 4.3. The total number of divisions of a honeycomb strip of length
n is given by d(n) = F2n−1, where Fn denotes the nth Fibonacci number.

The above theorem yields a nice combinatorial interpretation of the odd-
indexed Fibonacci numbers.
With the above result at hand, it is not too difficult to guess the explicit
formulas for dk(n) and sk(n). The following theorem is easily proved by
simply verifying that the proposed expressions satisfy the respective recur-
rences and initial conditions.

Theorem 4.4. The number of all divisions dk(n) of the honeycomb strip
with n hexagons into exactly k pieces is

dk(n) =
(

n + k − 2
n − k

)
.

The number sk(n) of all divisions of the honeycomb strip with n hexagons
into k pieces such that the two rightmost hexagons belong to different pieces
is equal to zero if n = 1 and for n ≥ 2 it is given as

sk(n) =
(

n + k − 3
n − k

)
.
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Even though sequences rk(n) and dk(n) satisfy different recursive relations
and describe different problems, it turns out that their columns satisfy the
same recurrences. Our next theorem is analogous to Theorem 3.1, but for
the sequence dk(n). We state it without proof.

Theorem 4.5. For n, k ≥ 1 we have

2k−1∑
j=0

(−1)j

(
2k − 1

j

)
dk(n − j) = 0. (4.4)

As with a rectangular strip, we are now interested in the generating function
of the sequence dk(n). Let

G(x, y) =
∑
n≥1

∑
k≥1

dk(n)xnyk.

By recursive relation 4.3 we have

G(x, y) = xy + x2y (1 + y) +

+
∑
n≥3

∑
k≥1

(dk−1(n − 1) + 2dk(n − 1) − dk(n − 2)) xnyk

= xy + x2y (1 + y) + xy (G(x, y) − xy) +
+ 2x (G(x, y) − xy) − x2G(x, y),

so we have
G(x, y) = xy(1 + x(y − 1) − xy)

1 − (2 + y)x + x2 .

By putting y = 1, we obtain the univariate generating function for the
sequence d(n) as

G(x, 1) = x − x2

1 − 3x + x2 .

Its smallest-modulus singularity is ω = 1
2

(
3 −

√
5
)

and this gives us the
asymptotics of the expected number of pieces in a random divisions of hon-
eycomb strips of a given length.

Theorem 4.6. The expected number of pieces in a random division of a
honeycomb strip of length n asymptotically behaves as

√
5

5
n ≈ 0.447214n.

The proof follows by a straightforward application of the Darboux theorem,
and we omit the details.
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4.2 Some consequences
Our results make it possible to give a new combinatorial interpretation for
some famous identities. We present two such cases.
First, by double-counting the set D(n), we gave new meaning to the well-
known identity

n∑
k=1

(
n + k − 2

n − k

)
= F2n−1.

Another identity will be proven in the next theorem.

Theorem 4.7. For n, m ≥ 1 we have

F2n+2m−1 = F2n−1F2m−1 + F2nF2m.

Proof. We start with two honeycomb strips of lengths n and m. To prove
the statement of a theorem, we glue strips together as in Figure 10 and
double-count the number of divisions. On one hand, we have a strip of
length n + m whose number of divisions is d(n + m). On the other hand,
we consider what can happen when strips are glued together. In the first
case, parts of each division do not interact, hence, we have d(n)d(m) such
divisions. In the other cases, at least two parts, one from each strip, must
merge. But to correctly count the number of divisions in those cases, it
is important to know whether the division is with the two last hexagons
together or separated. If both strips have the last two hexagons together,
the total number of such divisions is t(n)t(m). If both strips have the last
two hexagons separated, the total number of such divisions is 4s(n)s(m),
since there are four different ways to merge parts. Finally, if one strip has
two last hexagons separated and the other one together, we can merge the
parts in two ways. Since either one of the strips can be in both situations,
the total number of divisions in this case is 2s(n)t(m) + 2s(n)t(m).

2 n m − 1 1

1
· · ·

n − 1 m

· · ·
2

Figure 10: Two honeycomb strips glued together.

So,

d(n + m) = d(n)d(m) + 4s(n)s(m) + t(n)t(m) + 4s(n)t(m).

The claim now follows by substituting d(n) = F2n−1, s(n) = F2n−2 and
t(n) = F2n−3 and rearranging the resulting expressions.
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The results of this section can also be formulated in terms of graph com-
positions, this time of the graph P 2

n obtained by adding edges between all
pairs of vertices at distance 2 in Pn, the path on n vertices. The following
results are a direct consequence of the fact that P 2

n is the inner dual of a
honeycomb strip of length n.

Theorem 4.8. The number of compositions of P 2
n with k components is

equal to
(n+k−2

n−2
)
. The total number of compositions of P 2

n is equal to F2n−1.

5 Transfer matrix method

5.1 Honeycomb strips
In this section, we present another approach to obtain an overall number of
divisions, the one based on transfer matrices. It might seem less natural than
recurrence relations, but it often turns out to be suitable when recurrence
relations are complicated or unknown.
We again consider a honeycomb strip such as the one shown in the Figure 3,
and look at its rightmost column, i.e., at the hexagons labeled by n − 1 and
n. There are two possible situations regarding these hexagons: they can be
in the same piece of a subdivision, or they can belong to two different pieces.
We denote a strip with the last two hexagons together as a type T strip and
a strip with the last two hexagons separated as a type S strip. Adding the
(n + 1)−st hexagon might result again in a type S strip or a type T strip.
There are altogether four possibilities, each of which produces certain effects
on the number of pieces in the resulting strip. For example, if we start with
a strip of type S and we want to end with a strip of type S, we can either
add the new hexagon to the part which contains the (n − 1)st hexagon, or
we can let the (n + 1)st hexagon to form its own part. In the first case, the
number of parts will remain the same; in the second case, it will increase
by one. Figure 11 shows this case. The main idea of the transfer matrix

n

n + 1n − 1

n

n + 1n − 1

Figure 11: Both cases resulting in a strip of type S.

method is to arrange the effects of adding a single hexagon into a 2 × 2
matrix whose entries will keep track of the number of pieces via a formal
variable, say, y. The rows and columns of such a matrix are indexed by
possible states, in our case T and S, and the element at the position S, S in
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our example will be 1 + y. That clearly captures the fact that transfer from
S to S results either in the same number of pieces, or the number of pieces
increases by one. The other three possible transitions, T → T , S → T and
T → S are described by matrix elements 1, 1, and y, respectively. Indeed,
it is clear that adding a hexagon to obtain the rightmost column together
cannot increase the number of pieces, hence the two ones, and that starting
from T and arriving at S is possible only by the last hexagon forming a new
piece, hence increasing the number of pieces by one, hence y. If we denote
our matrix by H, we can write it as

H(y) =
[
1 1
y 1 + y

]
.

By construction, it is clear that adding a new hexagon will be well described
by multiplying some vector of states by our matrix H(y), and that repeated
addition of hexagons will correspond to multiplication by powers of H(y).
It remains to account for the initial conditions.
For the initial value n = 1, we have a trivial case, one hexagon forms one
part. For n = 2 we have two possibilities, hexagons are in the same part or
separated. Hence, his case is represented by a vector

−→
h2 = x

[
y
y2

]
.

By introducing another formal variable, say x, to keep track of the length,
the above procedure will produce a sequence of bivariate polynomials whose
coefficients are our numbers dk(n). The first few polynomials are shown in
Table 2 after the theorem, which summarizes the described procedure.

Theorem 5.1. The number of divisions of a honeycomb strip of a length n
into k parts is the coefficient of xnyk in the expression

[
1 1

] [1 1
y 1 + y

]n−2 [
y
y2

]
xn. (5.1)

The coefficients by xnyk in expression (5.1) could now be determined by
studying the powers of the transfer matrix. By looking at the first few
cases,

H(y)2 =
[

1 + y 2 + y
2y + y2 1 + 3y + y2

]
and

H(y)3 =
[

1 + 3y + y2 3 + 4y + y2

3y + 4y2 + y3 1 + 6y + 5y2 + y3

]
,
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n

1 xy
2 x2(y + y2)
3 x3(y + 3y2 + y3)
4 x4(y + 6y2 + 5y3 + y4)
5 x5(y + 10y2 + 15y3 + 7y4 + y5)
6 x6(y + 15y2 + 35y3 + 28y4 + 9y5 + y6)

Table 2: First few bivariate polynomials from the transfer matrix method.

we could guess the entries in the general case and then verify them by
induction. We state the result, omitting the details of the proof.
Lemma 5.2. Matrix

H(y)n =
[

p(n) s(n)
ys(n) p(n + 1)

]

with p(n) =
n∑

k=1

(
n + k − 2

n − k

)
yk−1 and s(n) =

n∑
k=1

(
n + k − 1

n − k

)
yk−1.

Lemma 5.2 allows us to simplify the expression (5.1) to have
[
1 1

] [1 1
y 1 + y

]n−2 [
y
y2

]
xn =

=
[
1 1

] [ p(n − 2) s(n − 2)
ys(n − 2) p(n − 1)

] [
y
y2

]
xn

=
(
yp(n − 2) + ys(n − 2) + y2s(n − 2) + y2p(n − 1)

)
xn

= (yp(n − 1) + y (s(n − 2) + yp(n − 1))) xn

= p(n)xny

=
n∑

k=1

(
n + k − 2

n − k

)
ykxn

By Theorem 5.1 we have

d(n, k) =
(

n + k − 2
n − k

)
.

Now we turn our attention to the number of all possible divisions, i.e. we
wish to determine the number d(n). To do that, we again use a matrix H(y)

and Theorem 5.1. By setting y = 1 we have H(1) =
[
1 1
1 2

]
=
[
F1 F2
F2 F3

]
.

Again, the following claim is easily guessed and verified by induction.
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Lemma 5.3. H(1)n =
[
F2n−1 F2n

F2n F2n+1

]
.

Finally, by Lemma 5.3 we can simplify expression (5.1) to have

[
1 1

] [F2n−5 F2n−4
F2n−4 F2n−3

] [
1
1

]
=
[
F2n−5 + F2n−4 F2n−4 + F2n−3

] [1
1

]

=
[
F2n−3 F2n−2

] [1
1

]
= F2n−1.

By Theorem 5.1 we have d(n) = F2n−1.

5.2 Chocolate bars
Transfer matrices can also be used to obtain the sequence rk(n) denoting
the number of ways to divide a rectangular strip 2 × n into k parts. In
this case, we do not add square by square, but column by column. So, let
T denote a division of a strip where squares in the last column are in the
same part, and S a division where squares in the last column are in different
parts.
For n = 1, we have the same case as n = 2 in a honeycomb strip, so this
case is represented by a vector

−→q1 = x

[
y
y2

]
.

Similar to the honeycomb case, if we start with a division of type T and we
wish to obtain another division of type T , we can do that either by append-
ing two new squares to the same part as the squares of the last column,
or we can let two new squares form a new part. Hence, the corresponding
entry in the transfer matrix is 1 + y. By doing a similar analysis for other
cases, we obtain the transfer matrix

Q(y) =
[

1 + y 2 + y
y(2 + y) (1 + y)2

]
.

Again, y is a formal variable keeping track of the number of pieces. So, for
a strip 2 × n, the coefficient by xnyk in the expression

[
1 1

] [ 1 + y 2 + y
y(2 + y) (1 + y)2

]n−1 [
y
y2

]
xn
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represents the number of ways to divide a rectangular strip 2×n into exactly
k parts.
We conclude this section by mentioning that in both cases, we could have
obtained the asymptotic behavior of numbers d(n) and r(n) by computing
the leading eigenvalue of the corresponding transfer matrix.

6 Concluding remarks
In this paper, we have employed two different methods to count divisions
of narrow strips of squares and hexagons, respectively, into a given number
of pieces, when cutting is allowed only along the edges of basic polygons.
We have obtained several triangular integer arrays and determined formu-
las for their entries. Despite similar settings, the two problems behave in
different ways: for honeycomb strips, the entries of the enumerating trian-
gles are given as binomial coefficients with parameters dependent on the
strip length and the number of pieces, while for chocolate bars, no closed-
form expression has been obtained. We were able to show, though, that
the entries in columns satisfy convolution-type recurrences with coefficients
forming alternating rows of Pascal triangle.
Both problems were then addressed by using the transfer-matrix formalism.
The original results for the total number of divisions were re-derived in a
more compact way, demonstrating thus the power of the transfer-matrix
method. However, we found the approach unsuitable for refining the ag-
gregate results, for establishing the polynomial nature of columns, and for
obtaining closed-form solutions in the rectangular case. Nevertheless, we be-
lieve that the transfer matrices would prove useful in treating several similar
problems, as indicated by our experiments with wider strips in both square
and hexagonal lattices and with narrow strips in the triangular lattice.
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