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Surprising bijections of the Riviera model

Tomislav Došlić, Mate Puljiz, Stjepan Šebek and Josip Žubrinić

Abstract
In this short note we give bijective proofs of two results from [3] which
establish a correspondence between the maximal configurations in the
Riviera model and two seemingly unrelated combinatorial objects:
strongly restricted permutations and closed walks on a certain small
graph. The results in the original paper were established by inspect-
ing generating functions of the enumerating sequences.

1 Introduction
In [3] we introduced the Riviera model as a variant of the combinatorial
settlement planning model first studied in [7, 8] and further developed in [2,
4]. The original problem, motivated by a real-life application and analyzed
in [7, 8], proved to be too complex for analytical treatment, so we considered
a 1-dimensional toy model which we were able to fully solve. Here, we
briefly recall the setup. We begin with a finite strip of land divided into
consecutive lots of equal size. Each lot can be occupied by a house or left
vacant. The first requirement is that each occupied lot must be adjacent to
at least one vacant lot. This resembles a Mediterranean settlement along the
coast (hence the name ‘Riviera model’) stretching in the east-west direction,
where each house is exposed to sunlight from the south and at least one
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additional side (east or west depending on which side the adjacent vacant
lot is). We can concisely write such configurations as binary words with
ones denoting occupied and zeros vacant lots. The configurations satisfying
this first requirement are called permissible. An example of a permissible
configuration is:

110110001010011.

Note that the two houses on the left and right edge of the strip are assumed
to be exposed to sunlight from west and east respectively. The second re-
quirement is that the configurations be maximal, meaning that no further
houses can be added to the vacant lots without violating the first insola-
tion requirement. Clearly, the configuration above is not maximal, but the
following is:

110110101011011.

It is clear that the first (permissibility) requirement is equivalent to asking
that no three consecutive ones appear anywhere in the configuration. And it
is not hard to see that the second (maximality) requirement can be verified
by inspecting substrings of length 4 of the given configuration. To be precise,
the following lemma was proven in [3].

Lemma 1.1 (Lemma 2.1 in [3]). Let n ∈ N. A configuration in the Riviera
model is maximal if and only if, when padded with zeros, it does not contain
any of the following (decorated1) substrings:

111, 000, 0100, 0010. (1.1)

Next, with Lemma 1.1 in hand, the standard transfer matrix method ap-
proach was employed in [3] to establish a one-to-one correspondence between
maximal Riviera configurations and walks on the directed graph in Figure 1.
This digraph was created by taking all the allowed (i.e. not forbidden) sub-
strings of length 3 and adding a directed edge from u1u2u3 to v1v2v3 if and
only if they overlap progressively, meaning that u2 = v1 and u3 = v2; and
if the substring u1u2u3v3 = u1v1v2v3 is not forbidden. The shaded start-
ing/ending nodes were determined based on the boundary condition, which
in our case states that the edge lots receive sunlight from the boundary side.
By standard methods, see [3], one can now write the transfer matrix as-
sociated to this graph and obtain the bivariate generating function of the

1When inspecting whether a configuration c1 . . . cn contains a decorated word
d1 . . . dk . . . dl, we check against a padded word . . . 000c1 . . . cn000 . . . but with the un-
derlined letter of the decorated word aligned with ci for i = 1, . . . , n. This is necessary as
e.g. the configuration 10011 would otherwise be considered allowed (not containing any
of the forbidden substrings), although it is not maximal.
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100 001 011 110 101 010

Figure 1: (Figure 3 in [3]) Transfer digraph GR for the Riviera model. For
example, a maximal configuration 110011010110 is represented by the walk:
110 → 100 → 001 → 011 → 110 → 101 → 010 → 101 → 011 → 110. Each
walk must start and end at shaded nodes.

sequence (Jk,n) enumerating maximal Riviera configurations of prescribed
length n and occupancy k:

g(x, y) = 1 + xy − (x − x2)y2 + x2y3 − x3y5

1 − xy2 − x2y3 − x2y4 + x3y6 =
∞∑

n=0

∞∑
k=0

Jk,nxkyn. (1.2)

Remark 1.2. Setting x = 1 in the expression (1.2) above, one obtains
g(1, y) = f(y), the generating function for the sequence (fn) which counts
the number of all maximal configurations of length n:

f(y) = 1 + y + y3 − y5

1 − y2 − y3 − y4 + y6 =
∞∑

n=0

( ∞∑
k=0

Jk,n

)
yn =

∞∑
n=0

fnyn. (1.3)

Similarly, by setting y = 1 in (1.2), one obtains g(x, 1) = h(x), the gener-
ating function for the sequence (hk) which counts the number of maximal
configurations (of variable length) with a fixed number k of occupied lots:

h(x) = 1 + 2x2 − x3

1 − x − 2x2 + x3 =
∞∑

k=0

( ∞∑
n=0

Jk,n

)
xk =

∞∑
k=0

hkxk. (1.4)

By expanding the bivariate generating function g = g(x, y), we obtain the
precise distribution of the occupancies of maximal configurations relative to
their length. The first few coefficients in the expansion of g(x, y) are given
in Table 1. Note that the ratio k

n for non-zero coefficients stabilizes between
1
2 and 2

3 as n becomes large.
The first several values of the sequence (fn), associated with the generating
function f(y), can be obtained as column sums of Table 1:

1, 1, 1, 3, 3, 4, 6, 9, 12, 16, 24, 33, 46, 64, . . .

Similarly, the first several values of the sequence (hk), associated with the
generating function h(x), can be obtained as row sums of Table 1:

1, 1, 5, 5, 14, 19, 42, 66, 131, . . .
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Table 1: The coefficients of xkyn in the expansion of the bivariate generating
function g(x, y).

k\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1
1 1
2 1 3 1
3 2 3
4 1 6 6 1
5 3 10 6
6 1 10 20 10 1
7 4 22 30 10
8 1 15 49 50 15 1
9 5 40 91 70 15
10 1 21 100 168

Upon consulting The On-Line Encyclopedia of Integer Sequences (OEIS) [9],
we realized that these sequences had been already studied in quite different
settings. The sequence (fn) appears as OEIS sequence A080013 and is de-
scribed as counting certain strongly restricted permutations. The sequence
(hn) appears as OEIS sequence A096976 and is described as counting closed
walks on the path graph P3 with a loop. The equipotency of the pairs of
these combinatorial objects follows directly from the fact that their gener-
ating functions match (up to a finite degree polynomial). However, it is
possible to construct explicit bijections demonstrating these equipotencies.
This is the content of the next two sections.

2 The Riviera model and strongly restricted per-
mutations

The notion of strongly restricted permutations was introduced by Lehmer
in [5]. If W is some fixed subset of integers, one would like to count the
number of all the permutations π ∈ Sn

2 such that π(i) − i ∈ W , for all
i ∈ [n].
In [10, Examples 4.7.9, 4.7.17–18] two techniques are presented for obtaining
the generating function for the number of strongly restricted permutations
for some particular sets W , namely the transfer-matrix method and the
technique using factorization in free monoids.
In [1], Baltić devised a new technique for counting restricted permutations
in case min W = −k and max W = r for some positive integers k ≤ r.
When W = {−2, −1, 2}, the sequence counting the corresponding restricted
permutations of length n appears in OEIS under the number A080013. The

2Sn denotes the set of all permutations of the set [n] = {1, . . . , n}.
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generating function of that sequence is 1 − y2

1 − y2 − y3 − y4 + y6 . Note that

1 − y2

1 − y2 − y3 − y4 + y6 = 1 + y3 + y4 · 1 + y + y3 − y5

1 − y2 − y3 − y4 + y6

= 1 + y3 + y4 · f(y),

where f(y) is the generating function for the number of maximal Riviera
configurations of fixed length n, see (1.3). From here, the following result
is immediate.

Theorem 2.1. The number of maximal configurations of length n in the
Riviera model is equal to the number of permutations π of length n + 4,
which satisfy the constraint

π(i) − i ∈ {−2, −1, 2}. (2.1)

It turns out that one can construct a natural bijection between these two
types of objects. The idea is to encode restricted permutations as walks on
some digraph, similar to the one in Figure 1. If those two graphs are isomor-
phic, this isomorphism would automatically produce a bijection between the
underlying combinatorial objects.
To construct this digraph we, once again, use the transfer-matrix method.
One can argue as in [10, Example 4.7.9] to show that the method is ap-
plicable in this case. Let π ∈ Sn be a permutation for which π(i) − i ∈
W = {−2, −1, 2}, for all i ∈ [n]. One can rewrite such a permutation
as a sequence of symbols in W . In order to check that such a sequence
u1 . . . un corresponds to a valid permutation, it suffices to check all the sub-
strings of length 5. This is because the function σ : [n] → [n] defined as
σ(i) = i + ui will be a permutation as soon as it is onto; and for this, one
only needs to check whether i ∈ {σ(i − 2), σ(i − 1), σ(i), σ(i + 1), σ(i + 2)},
for all 3 ≤ i ≤ n − 2. Additionally, one needs to check that 1 and 2 are
in the set {σ(1), σ(2), σ(3), σ(4)}, and that n − 1 and n − 2 are in the set
{σ(n − 3), σ(n − 2), σ(n − 1), σ(n)}. The effect of this being that the walks
must start and end at a certain subset of vertices of the constructed digraph.
From here, one can write Algorithm 1 that produces this digraph which is
an induced subgraph of the de Bruijn graph over the set of all 5 letter words
in the alphabet {−2, −1, 2}.
The digraph G constructed in Algorithm 1 has the vertex set V consisting
of 30 allowed words of length 5. It turns out that this graph can be further
condensed to give a smaller representation of our strongly restricted per-
mutations. If one considers all the 4-letter words {−2, −1, 2}4 that do not
appear as substrings of the 30 allowed words, one gets 59 forbidden words of
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Algorithm 1 The creation of the digraph G for strongly restricted permu-
tations

AllowedNodes = ∅
StartNodes = ∅
EndNodes = ∅
for u1u2u3u4u5 ∈ {−2, −1, 2}5 do

if 3 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then
add node u1u2u3u4u5 to AllowedNodes
if 1, 2 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then

add node u1u2u3u4u5 to StartNodes
end if
if 4, 5 ∈ {1 + u1, 2 + u2, 3 + u3, 4 + u4, 5 + u5} then

add node u1u2u3u4u5 to EndNodes
end if

end if
end for

E = ∅
for u1u2u3u4u5, v1v2v3v4v5 ∈ AllowedNodes do

if u2u3u4u5 = v1v2v3v4 then
add edge u1u2u3u4u5 → v1v2v3v4v5 to E

end if
end for

V = ∅
for u1u2u3u4u5 ∈ AllowedNodes do

if there is a path starting in StartNodes, passing through u1u2u3u4u5
and ending in EndNodes then

add node u1u2u3u4u5 to V
end if

end for

remove from E all the edges not involving nodes in V
return G = (V, E)
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22-2 2-2-2 -2-22

-122 -1-12 2-1-1 -22-1

-2-12 -12-1 2-12

2-2-1 -12-2

-22-2 2-22

(a)

001100

011001 110011 100110

101100 110110 011011 001101

010110 101101 011010

101011 110101

010101 101010

(b)

Figure 2: The digraph GP in 2(a) encodes strongly restricted permutations
satisfying the constraint (2.1). The starting nodes are shaded and thicker
outlines indicate the ending nodes. The digraph G′

R in 2(b) encodes con-
figurations of the Riviera model using substrings of length 6. The nodes
corresponding to the highlighted nodes in 2(a) via the unique digraph iso-
morphism are shaded and outlined in this graph too.

length 4. By inspection, one can check that each of the 213 = 35 −30 forbid-
den 5-letter words contains one of the 4-letter forbidden words which means
that the same information contained in G can be encoded in a digraph with
a vertex set consisting of only 22 = 34 − 59 4-letter words. Finally, if we
use edges to encode allowed words, rather than just taking the whole in-
duced subgraph of the corresponding de Bruijn graph, we can condense this
digraph even further, and obtain the digraph in Figure 2(a) with 15 nodes
representing allowed 3-letter words and an edge from u1u2u3 to v1v2v3 if
and only if u1u2u3v3 = u1v1v2v3 is allowed 4-letter word. The highlighted
nodes are either starting or ending nodes, or, in one case, both.
We would now like to match the digraph in Figure 2(a), call it GP , with
the digraph in Figure 1, call it GR. Unfortunately, they are not isomorphic,
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but we can try to create higher edge graphs from the digraph GR, details
below, which encode the same information as GR — in hope of obtaining a
graph isomorphic to GP . This process is opposite of ‘condensation’ we have
performed to the digraph produced by the Algorithm 1 in order to obtain
the digraph GP .
We have already noted that the graph GR shown in Figure 1 is a subgraph
of the 3-dimensional de Bruijn graph over the alphabet {0, 1}. We can
construct a subgraph of the n-dimensional de Bruijn digraph, where n > 3,
over the same alphabet, which will encode the same information as GR.
It turns out that n = 6 will do. The vertex set of this, so called, higher
edge graph G′

R consists of all the allowed words of length 6, which one can
think of as all the possible walks of length 3 on the graph GR. A directed
edge from c1 . . . c6 to d1 . . . d6 is added to the edge set of G′

R if and only
if the corresponding words overlap progressively (c2 . . . c6 = d1 . . . d5). The
digraph G′

R is, therefore, the vertex-induced subgraph of the corresponding
6-dimensional de Bruijn graph. For more details on construction of higher
edge graphs, see [6, Definition 2.3.4].
The graph G′

R obtained by the above procedure, is shown in Figure 2(b).
Note that it is isomorphic to GP , and that this isomorphism is unique. Also
note that the set of nodes at which the walks on G′

R would be allowed to
start and end is much larger than the set highlighted in Figure 2(b). More
precisely, any node c1 . . . c6 for which c1c2c3 ∈ {110, 101, 011} would be a
starting node, and if c4c5c6 ∈ {110, 101, 011}, it would be an ending node.
But the walks of length n+1 on G′

R would then account for all the maximal
configurations in the Riviera model of length n + 7 — and that is not what
we want, since the walks of length n+1 on GP encode the strictly restricted
permutations of [n + 4].
If we consider the walks on G′

R which start and end at the nodes that
correspond to starting and ending nodes in GP , we immediately note that
all the configurations obtained in such a way always start with 0110 and
end with 011. Using the graph GR in Figure 1 it is clear that adding the
prefix 0110 and suffix 011 to a maximal configuration, again produces a
7-blocks longer (permissible) maximal configuration. This is because from
each starting node, there is a backward path (going along edges in the
direction opposite to the arrow direction) of length 4 which produces the
prefix 0110; also from each ending node, there is a 3-step continuation of
path which produces the suffix 011. Conversely, removing that same prefix
and suffix from a maximal configuration of length n+7, produces a maximal
configuration of length n. We can again argue using the graph GR. Any
walk starting with 011 → 110 after three steps must again reach one of the
starting nodes; and walk ending in 011 when traced backwards must, after
three steps going backwards, reach one of the ending nodes. This shows

40



Surprising bijections of the Riviera model

that there is a bijective correspondence between all the maximal Riviera
configurations of length n and the maximal Riviera configurations of length
n+7 starting with 0110 and ending with 011 which in turn are in a bijective
correspondence with the strongly restricted permutations of length n + 4.
The bijection is obtained by translating walks on GP to walks on G′

R and
the other way around.
It is, in fact, possible to specify this bijection even more concisely, cir-
cumventing the graphs in Figure 2 altogether. Compare each edge in GR
with all its associated edges in G′

R and note that the corresponding edges
in graph GP all represent adding the same symbol at the end. E.g. the
transition 011 → 110 in GR corresponds to transitions 101011 → 010110,
011011 → 110110 and 110011 → 100110 in G′

R and all of them in GP cor-
respond to adding the letter 2 at the end. Collecting all this information
together, we can label the edges of the graph GR in Figure 1 with the
appropriate letter which is being added in the permutation graph GP cor-
responding to that transition. This edge-labeled graph is given in Figure
3.
We now summarize how to bijectively map any maximal Riviera configura-
tion of length n to a strongly restricted permutation of length n + 4 using
Figure 3. Take any such maximal configuration and prefix it with 0110 and
suffix it with 011. Then take a walk over the graph in Figure 3 (which
will be of length n + 7 − 3 = n + 4) and collect the labels u1 . . . un+4 of all
the edges traversed. Finally, construct the bijection σ : [n + 4] → [n + 4] as
σ(i) = i + ui for i ∈ [n + 4].
As an example, the maximal configuration 10110 is first enlarged to the
maximal configuration 0110|10110|011. Next, we examine the unique walk
determined by this configuration: 011 2−→ 110 −1−→ 101 2−→ 010 −2−→ 101 −1−→
011 2−→ 110 2−→ 100 −2−→ 001 −2−→ 011. This walk generates the permutation
σ encoded with the string 2-12-2-122-2-2, which is the permutation(

1 2 3 4 5 6 7 8 9
3 1 5 2 4 8 9 6 7

)
.

We end this section with a remark which will prove useful in the next section.

Remark 2.2. Above, we have argued that taking any maximal configura-
tion c1 . . . cn and prefixing it with 0110 and suffixing it with 011 yields a
bijection between all the maximal Riviera configurations of length n and
the maximal Riviera configurations of length n + 7 starting with 0110 and
ending with 011.
If we further add prefix 10 and suffix 001 to these already extended configu-
rations, we obtain a bijective correspondence between the maximal Riviera
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100 001 011 110 101 010
-2 -2

-2

-1

2

2 2

-1

Figure 3: The digraph GR with labeled edges which encodes the bijection be-
tween maximal configurations of length n in the Riviera model and strongly
restricted permutations of length n + 4 where W = {−2, −1, 2}.

configurations c1 . . . cn of length n and the configurations of length n + 12
starting with 100110 and ending with 011001 which, although not max-
imal (because of the boundary condition), do not properly contain3 any
substrings forbidden by Lemma 1.1. Each of those extended configura-
tions can, therefore, be represented as a walk on GR (Figure 1) starting
at the node 100 and ending at the node 001. Conversely, if a configura-
tion 100110c1 . . . cn011001 (of length n + 12) does not properly contain any
substrings forbidden by Lemma 1.1, or equivalently, can be represented as
a walk on GR (of length n + 9) starting at 100 and ending at 001, then
after removing prefix 100110 and suffix 011001 one is left with a proper
maximal configuration c1 . . . cn of length n. This is because removing prefix
and suffix corresponds to cutting off the first part of the walk 100-001-011-
110-10c1-0c1c2 and the last part of the walk cn−1cn0-cn01-011-110-100-001.
Note that regardless of what c1, c2, cn−1, and cn are — the next node after
0c1c2 as well as the node just before cn−1cn0 will always have to be one of
the starting/ending nodes, which means that the remaining part of the walk
encodes a proper maximal configuration c1c2 . . . cn−1cn.

3 The Riviera model and closed walks on P3 with
a loop

In (1.4) we have derived the generating function h(x) for the number of
maximal Riviera configurations (of variable length) containing a fixed num-
ber k of occupied lots. This sequence appears in OEIS [9] in two instances
as A052547 with offset 3 and as A096976 with offset 5. There are three more
related sequences: A006053, A028495, and A096975, satisfying the same re-
currence relation with different initial conditions. Each of these sequences
is connected to the number of walks on the graph P3 (the path graph over

3By properly contain we mean contained as a substring within an unpadded configu-
ration.
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• • •

(a) P3 with a loop, P for short

1001 11 101

(b) P with labeled nodes

Figure 4

three nodes) with a loop added at one of the end nodes. This graph is
represented in Figure 4(a) and we denote it by P. The precise connection
relating this graph with our sequence is given in the following theorem.

Theorem 3.1. The number of maximal Riviera configurations containing
exactly k occupied lots is equal to the number of closed walks of length k + 4
on the graph P which start and end at the node of degree 1. There is a
natural bijection relating these quantities.

Remark 3.2. If equipotency result is all one wishes to pursue, it suffices
to compare the two sequences’ generating functions. Note that

1 − x − x2

1 − x − 2x2 + x3 = 1 + x2 + x4 + x4 · 1 + 2x2 − x3

1 − x − 2x2 + x3

= 1 + x2 + x4 + x4 · h(x),

where 1 − x − x2

1 − x − 2x2 + x3 is the generating function of the sequence A096976
and h(x) is the generating function for the number of maximal Riviera
configurations (of variable length) containing a fixed number k of occupied
lots, see (1.4).

Proof of Theorem 3.1. From Lemma 1.1 we know that no three consecutive
0’s are allowed in a maximal configuration. That means that each two neigh-
boring 1’s must be separated by zero, one or two 0’s. This further means
that, after ignoring leading and trailing 0’s, each maximal configuration can
be identified by a sequence of strings in the set {11, 101, 1001}. We assume
here that the last 1 in one string overlaps with the first 1 in the next. E.g.
we would split the configuration 11011001101 as 11-101-11-1001-11-101.
From Lemma 1.1 we also see that 11 cannot be followed or preceded by 11
(as this would produce 111); 101 and 1001 cannot be followed or preceded
by 1001 (as this would produce 0100 or 0010). It is easy to see that the
remaining transitions: 1001-11 and 11-101 going in either direction, and the
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loop at 101 — can all appear in a maximal configuration and are, thus, all
allowed. These transitions are shown in the node-labeled graph P in Figure
4(b). We use undirected edges as in each case the transitions going either
way are allowed.
Consider now the mapping which to each maximal Riviera configuration
c1 . . . cn assigns the configuration 100110c1 . . . cn011001. By Remark 2.2 we
know that this map is a bijection from the set of all maximal Riviera con-
figurations with exactly k occupied lots to the set of configurations of the
form 100110c1 . . . cn011001 which have exactly k + 6 occupied lots. Those
obtained configurations are not maximal but do not properly contain sub-
strings forbidden by Lemma 1.1.
Now each of those configurations of the form 100110c1 . . . cn011001, where
c1 . . . cn is a proper maximal configuration with k occupied lots, can be rep-
resented as a walk of length k+4 on the graph P in Figure 4(b) which starts
and ends at 1001. Conversely, one easily checks (by inspecting all length 2
walks) that a walk on this graph can never produce a configuration properly
containing a substring which is forbidden by Lemma 1.1. Therefore, each
walk of length k + 4 starting and ending at 1001 will necessarily produce
a configuration of the form 100110c1 . . . cn011001 which does not properly
contain a substring forbidden by Lemma 1.1 and has k + 6 1’s. By Remark
2.2, the word c1 . . . cn will be a proper maximal configuration with exactly
k 1’s.
Putting everything together gives us the required bijection. A maximal
Riviera configuration c1 . . . cn containing exactly k occupied lots is written
as the string 100110c1 . . . cn011001, which is then represented as a walk of
length k + 4 over the graph P. As an example, the maximal configuration
10110 is mapped to 10110 → 100110|10110|011001 which corresponds to the
walk: 1001 → 11 → 101 → 101 → 11 → 1001 → 11 → 1001 which begins
and ends with the node 1001.

4 Concluding remarks
Modern enumerative combinatorics uses a wide and evergrowing repertoire
of methods and techniques. Prominent among them are analytical methods,
based on extracting the information encoded in generating functions of the
considered sequences. Another example are the methods based on transfer
matrices. Powerful and useful as they are, in the eye of many practitioners
they both suffer from a serious shortcoming: They do not reveal the true
nature of connections between different combinatorially interesting families.
According to their opinion, only a combinatorial, bijective, proof can offer
deep(er) insight. So, combinatorial proofs are often sought even long after
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interesting results have been obtained in other ways.
In this short note we provide combinatorial proofs for two enumerative re-
sults from our earlier paper on settlement planning [3]. We have constructed
bijections connecting jammed configurations in a 1-dimensional toy model
of settlement planning with, on one hand, restricted permutations, and, on
the other hand, walks on a small graph. Hence, they reveal hidden connec-
tions between seemingly unrelated families of objects, providing support for
the above claim and justifying the effort invested in their construction.
Our toy model, simple as it is, still offers many interesting problems which
are still unanswered. For example, it would be interesting to (numerically)
simulate its progression inwards, once the sea-front is fully developed (i.e.,
when no new constructions are legally possible). Another direction, more
suitable for analytical and/or combinatorial treatment, would be to remain
in one dimension but to allow multi-storied buildings and to investigate
whether this modification results in more efficient jammed configurations.
We are confident that the interested reader will find also problems and
research questions we have overlooked.
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