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Plotting planar and toroidal maps

Mathieu Dutour Sikirié

Abstract
Plotting planar and toroidal maps is a common problem in graph
visualization. We present here an algorithmic implementation that
has been used in [3]. The implementation is publicly available.

1 Introduction

The graphs considered in this study can have multiple edges, and it is
also possible that both endpoints of a face are the same. A graph is said
to be of genus g if it can be embedded on a surface of genus g. If g = 0,
the graph is called planar and if g = 1, it is called toroidal. A face in such
an embedding is bounded by a sequence of edges and is homeomorphic to
a disk. This embedding gives positions of vertices, edges, and faces.

The combinatorial structure of the vertices, edges, and faces can be stud-
ied without having a specific embedding, as the individual positions of the
vertices do not matter very much. However, if one has built a graph with
edges, vertices, and faces, we may want to find an embedding, as this can
be helpful for scientific purposes and also for visualization.

The problem of graph embedding has been considered from various view-
points. In [9] a method to use the eigenvectors of the largest eigenvalues of
the adjacency matrix was used. The method works well for plane graphs
but suffers from one key problem: the inner faces tend to be very small and
not visible. Also, the method works only for planar graphs.

The program CaGe (see [1, 2]) uses an iterative process in order to get
an embedding. A priori, it works only for planar graphs. Another class of
methods is to minimize the functional F

F= > f(llzi—al)

e=(1,7)€E(G)
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A more powerful and conceptual technique is to use primal-dual circle
packing for obtaining a drawing (see [6]). The technique works for any genus
and graphs that are 3-connected.

2 Combinatorial representation of maps

A general 2-dimensional map M can be represented by vertices, edges,
and faces. The incidence relation between those objects is best encoded by
the notion of flags. A flag is a triple (v,e, F') with v a vertex, e an edge,
F a face and v € e C F. Denote by Flag(M) the set of all flags of M.
From the flags, we can define the flag operators oy, o1, and o9. For a flag
f = (v,e, F), the image oo(f) is defined as the flag that is identical to
f except at the vertex, o1(f) the flag that is identical to f except at the
edge and oy(f) the flag that is identical to f except at the face. The flag
operators are uniquely determined by those constraints. They satisfy the
relation 03 = Id and ogoy = 090¢.

The flag operators are permutations on the set of flags, and they can
be used for representing the maps efficiently. For example, the vertices
correspond to the orbits of the group generated by {01,002} on Flag(M).
The formalism of flags works well even for the non-orientable maps such as
the projective plane or the Klein bottle.

However, for the purpose of this work, the maps that we consider are
oriented. So instead of something so general, we use the directed edge
formalism. At every vertex and every edge, we associate a direction. We
define two operators:

1. The next operator n that sends a directed edge to the next one in the
positive (counterclockwise) orientation.

2. The inverse operator ¢ that reverses the direction of the directed edge.

See Figure 1 for an example of such an action on a directed edge. Since a
planar graph has a finite number of directed edges, those operators can be
represented as two permutations. The vertices, edges, and faces correspond
to the orbits of the group generated by {n}, {i}, and {n oi}.

3 The primal-dual circle method

It is a remarkable fact that in dimension 2, we have a meta-theorem that
combinatorics=geometry. That is, combinatorics alone suffices to encode
an object. One example of such a theorem is Steinitz theorem ([8] and [10,
Chapter 4]) that states that a graph is the skeleton of a 3-dimensional
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Figure 1: The action of the next and inverse operator on a directed edge

polytope if and only if it is planar and 3-connected. The primal-dual circle
packings are an effective technique that allows to represent graphs given by
their combinatorial information (see Chapter 5 of [5]).

The idea is to put circles Cyer(v) in the vertex center and face center
Ctace(F') so that:

o The interiors of the circles Cyert(v) are all distinct. Two circles Cert ()
and Cyert(v') intersect in a point if and only if the vertices v and v’
are adjacent. Denote Pyert(v,v") the intersection point.

o The interiors of the circles Cyqee(F) are all distinct. Two circles
Ctace(F) and Cpaee(F') intersect in a point if and only if the faces
F and F’ share an edge. Denote Ppqc.(F, F') the intersection point.

e If v and v’ are adjacent vertices with an edge e shared between faces
F and F’ then we have Pyer¢(v,v") = Foee(F, F')

Those properties are represented in Figure 2.

According to [6], if a graph G of genus g is 3-connected and simply
connected then there exists an embedding of the universal cover of G into
the sphere (if g = 0), the plane (if g = 1) or the hyperbolic plane (if g > 1).
See Figure 3 for one such example.

Due to the invariance by duality of the primal-dual circle packing, it
makes sense to consider the medial graph Med(G) for a graph of genus
g. It is the graph whose vertices are the vertices and faces of GG, and two
vertices of Med(G) are adjacent if one is a vertex u of G, and another is a
face F' of G and u € F. The graph Med(G) is also of genus g and its faces
are of size 4. This is the method used in this work.
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Figure 2: The local picture of a primal-dual circle representation

Figure 3: The edges, circle, and face circles of a primal-dual representation
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4 Numerical techniques for the planar case

The equation system that needs to be resolved for plotting the graph
represents the fact that the sum of the angles is 27 at each vertex. The
angles are computed from the radii of the circles Cyer¢(u) and Craee(F)

In the case of genus g = 1, the angle equations are simpler to write down
since we do not have to deal with spherical or hyperbolic trigonometry. We
define for each vertex v of Med(G) the angle sum:

Oy = Z arctan <M> .

weB(Med(G)) v

The equations to resolve are thus
¢y =7 for v € V(G).

This is a system of non-linear equations, and we have the equation

Y pp—m=0. (4.1)

veV (Med(G))

This conservation equation renders the system underdetermined. Thus, if
the collection (r,) is a solution, then (Ar,) is also a solution.

[6] has given an algorithm for computing the primal dual circle pack-
ings radii. It consists of computing the defect at every node and increas-
ing/decreasing the radius value according to ¢, > 7w or ¢, < 7. It is a
geometric method that is quite efficient, but in some cases it is very slow.

Newton’s method cannot be applied right away as the problem is un-
derdetermined. We address this by restricting ourselves to the vector space
of directions that do not change the sum of the radius of all the circles.
Another more essential problem is that when we apply the Newton method,
we can obtain a negative value for some radii. The technique that we use
is instead to rescale the increment by a factor ¢ in the following way:

—c—F2- with0<e<1

(@)

In the terminology of [7] it is Newton method with a line search. We start
with a factor ¢ = 1 and then decrease it by a factor 1.2 until:

L)

1. All the radii are positive.
2. The sum of the absolute error 3, (¢, — 7)? has decreased.

This turns out to work very well.
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Figure 4: The k-fold axis position can be on a vertex, an edge, or a face

Figure 5: The scheme used for transform a graph into another that is easier
to draw.

5 Graphical niceties

Obtaining a graphical representation of a map can be helpful. However,
we sometimes want something nicer to look at. For example, if a graph has a
3-fold axis of symmetry, then we may want to have this axis directly visible
on the map. If the axis is passing through a face, then we just need to select
the appropriate face. If, however, the axis passes through two vertices, then
we have a problem. We need to represent it, but we must choose the correct
axis. It is also possible for a 2-fold axis to pass through two edges. Some
examples are shown in Figure 4.

The primal-dual technique requires 3-connectivity and will not work with
2-gons and 1-gons. The technique is to refine it. First, for a map M we
replace it with the order complex map Ord(M) = Trunc(Med(M)). Then
we insert a vertex on each edge. Finally, we put a vertex on each face and
connect it to all incident vertices. The resulting triangulation is 3-connected.
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6 CaGe process and the integrated algorithm

The algorithm of [1] is used for the drawing of planar graphs. It works
in the following way:

e Select an external face F' and puts the vertices in a circle.

e Put a point zy in the center of each face that is not external. We
have a collection of points (x,) U (zF).

o For each point z that is not on the outer circle and that is contained
in the triangles (z,z%, 2't!), we have

m i i+1

" A%(i,xi, peRy ;A%(x,xi’miﬂ)x +x 3+ T
with Ap(z,y, z) the area of the triangle of vertices x, y and z.

e The equation can be solved by fixed-point iterations.

For a planar graph, we apply the following construction:

e Apply the truncation scheme of Section 5.

o Depending on the choice of the external face (vertex, edge, or face),
select the corresponding external face.

e Apply the CaGe process to find an embedding.

e From the positions of the various points, build the path that corre-
sponds to an edge of the graph.

The CaGe process is an averaging process where we average the position
of the neighbor in order to update the position of a point. This same process
can be applied in the toroidal case. This can yield a clear improvement to
the obtained graph as shown in Figure 6.

7 The effective design of the software and how to
use it

It is important to have Open Source code so that other users can benefit
from the created software. But, that is not quite sufficient if the Open
source software is very difficult to use. Thus, we have tried to make a
Python-based solution which should be convenient as Python has emerged
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Primal dual followed by
Primal dual CaGe process

Figure 6: The graph of a toroidal map obtained by the primal-dual processed
followed by the one with the CaGe process applied afterward

as the equivalent of English in Computer Science: not a perfect language,
but everybody is using it.

The computation of the coordinates is done with a code written in C++-.
The matrix algebra is done by using the Eigen library ([4]). The input file
of the program follows the Fortran Namelist format, which is a simple yet
reasonable to use format.

The data are then exported to a SVG file. The SVG file format is adequate
for this purpose since it is a symbolic text file format that can be used in
Web browsers. Also, SVG files can be edited by inkscape. This allows users

to easily edit according to their wishes.
The Python code is accessed via

pip3 install https://github.com/MathieuDutSik/PyPlot_orientedmap

Alas, not everything is so simple with the program usage. The difficulty
is in creating the input. As convenient as the format with directed edges is,
it has a distinct computational aspect to it.
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