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Abstract
By using central Delannoy numbers and a new theorem from number
theory, we give almost a complete 3-adic valuation of large Schröder
numbers Sn, except for the case S6k+4, k ≥ 0.
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1 Introduction
The large Schröder Numbers Sn count all lattice paths in the plane from
(0, 0) to (n, n) by using horizontal steps (1, 0), vertical steps (0, 1), and
diagonal steps (1, 1) such that never rise above the main diagonal y = x. It
is known [6, Exercise 6.39], at least, 11 combinatorial objects are counted
by large Schröder numbers Sn.
A formula for calculating large Schröder numbers Sn is also well-known:

Sn =
n∑

k=0

1
k + 1

(
n + k

k

)(
n

k

)
. (1.1)

This sequence starts with: S0 = 1, S1 = 2, S2 = 6, S3 = 22, S4 = 90,
S5 = 394, S6 =1806, . . .; and it can be found as sequence A006318 in [5]
Recently, a new formula for a 3-adic valuation of large Schröder numbers
Sn has been discovered, where the p-adic valuation of an integer y ≥ 0 is
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definied as follows: Let p be a prime number, and let y be an integer. Then
vp(y) denotes the exponent of the highest power of the prime number p that
divides y, i.e., pvp(y) divides y, pvp(y)+1 does not divide y, and is called the
p-adic valuation of y.
It is readily verified that v3(S0) = v3(S1) = v3(S3) = v3(S5) = 0, v3(S2) =
v3(S6) = 1, and v3(S4) = 2.
Furthermore, it is well-known that Catalan number Cn counts all lattice
paths in the plane from (0, 0) to (n, n) by using horizontal steps (1, 0) and
vertical steps (0, 1) that never rise above the main diagonal y = x. Catalan
numbers Cn = 1

n+1
(2n

n

)
represent the famous sequence which has the most

applications in combinatorics after the binomial coefficients.
This sequence starts with: C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14,
C5 = 42, C6 = 132, . . .; and it can be found as sequence A000108 in [5]. It
is readily verified that v3(C0) = v3(C1) = v3(C2) = v3(C3) = v3(C4) = 0,
and v3(C5) = v3(C6) = 1.
Now, we are ready to present a recently [4, Theorem 6, Eqns. (28) and (29),
p. 6] discovered formula for a 3-adic valuation of large Schröder numbers
Sn:

Theorem 1.1. Let n be a non-negative integer. Then the following formulae

v3(S2n+1) = v3(Cn), (1.2)
v3(S2n+2) = 1 + v3(2n + 1) + v3(Cn). (1.3)

hold.

The Equation (1.2) represents, by our opinion, one of the most beautiful
results in number theory. It tells us that large Schröder numbers with odd
indices have the same factorization of powers of three as Catalan numbers
Cn.
Recently, the proof of Theorem 1.1 was given using the little Schröder num-
bers sn. The little Schröder numbers sn count, among other things, the
number of plane trees with a given set of leaves, the number of ways of in-
serting parentheses into a sequence, and the number of ways of dissecting a
convex polygon into smaller polygons by inserting diagonals. Furthermore,
if n is a natural integer, then it is known that sn = 1

2 · Sn.
This sequence starts with: s0 = 1, s1 = 1, s2 = 3, s3 = 11, s4 = 45,
s5 = 197, s6 = 903, . . .; and it can be found as sequence A001003 in [5].
Obviously, v3(sn) = v3(Sn), for any non-negative integer n.
The aim of this paper is to give an another proof of Theorem 1.1. We give
almost a complete proof of Theorem 1.1 by using central Delannoy numbers
Dn and a new theorem from number theory.
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The central Delannoy numbers Dn represent the number of lattice paths in
the plane from (0, 0) to (n, n) by using horizontal steps (1, 0), vertical steps
(0, 1), and diagonal steps (1, 1). Such paths are also known in the literature
as royal paths. Sulanke [7] gave, in a recreational spirit, a collection of 29
configurations counted by these numbers.
For calculating central Delannoy numbers Dn, there are, at least, two for-
mulae [1, Eq. (1), p. 1]:

Dn =
n∑

k=0

(
n

k

)2

2k, (1.4)

Dn =
n∑

k=0

(
n + k

k

)(
n

k

)
. (1.5)

This sequence starts with: D0 = 1, D1 = 3, D2 = 13, D3 = 63, D4 = 321,
D5 = 1683, D6 = 8989, . . .; and it can be found as sequence A001850
in [5]. It is readily verified that v3(D0) = v3(D2) = v3(D6) = 0, v3(D1) =
v3(D4) = 1, and v3(D3) = v3(D5) = 2.
It is known [4, Eq. 5, p. 2] that central Delannoy numbers satisfy the fol-
lowing second order recurrence relation:

(n + 2)Dn+2 = 3(2n + 3) · Dn+1 − (n + 1) · Dn. (1.6)

A connection between central Delannoy numbers and large Schröder num-
bers is given [4, Eq. 6, p. 2] by the following formula:

Sn = 1
2

· (−Dn−1 − Dn+1 + 6Dn), (1.7)

where n is a natural number.
Finally, we present a recently discovered new theorem from number theory.
Let x and y be integers such that x ̸= 0 and x ̸= ±1. Let ωx(y) denote
the exponent of the highest power of an integer x that divides an integer y.
Note that we shall use the notation vp(y) instead of ωx(y) when the integer
x is equal to a prime number p.
Let n be a non-negative integer. Let a and b be integers such that are
relatively prime and a ̸= −b, as well as a + b ̸= ±1.
The recently discovered theorem [4, Theorem 1, Eqns. (18) and (19)] from
number theory states that
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Theorem 1.2.

ωa+b(
2n∑

k=0

(
2n

k

)2

· a2n−k · bk) = ωa+b(
(

2n

n

)
), (1.8)

ωa+b(
2n+1∑
k=0

(
2n + 1

k

)2

· a2n+1−k · bk) = 1 + ωa+b((2n + 1) ·
(

2n

n

)
). (1.9)

By setting a := 2 and b := 1 in (1.8) and (1.9), we obtain the formulae
for calculating a 3-adic valuation of central Delannoy numbers [4, Theorem
5, Eqns. (27) and (26), p.6 ], where v3(y) = ω3(y), as we said before (see
also [2]). Therefore, the following two formulae are true for any non-negative
integer n:

v3(D2n) = v3(
(

2n

n

)
), (1.10)

v3(D2n+1) = 1 + v3(2n + 1) + v3(
(

2n

n

)
). (1.11)

Recently, Lengyel gave, among other, the formula [1, Theorem 10, p. 8] for
3-adic valuation of central Delannoy numbers. However, his formula is true
for any n sufficiently large. Our two formulae from Eqns. (9) and (10) are
true for any natural number n.
Lengyel also gave the formula [1, Theorem 17, p. 19] for the 3-adic valuation
of large Schröder numbers Sn for the case n − 1 is divisible by 3.
The rest of the paper is structured, as follows: in the second section, we
present auxiliary results. In the third section, we give a proof of (1.2). In
the fourth section, we give a proof of (1.3) for the cases n − 2 is divisible by
3 and n is divisible by 3.

2 Auxiliary Results
Our first auxiliary result is:

Proposition 2.1. Let n be a natural number. Then the following recurrence
relation holds:

2(n + 1)Sn = 3Dn − Dn−1. (2.1)

The second auxiliary result is:

Proposition 2.2. Let n be a non-negative integer. Then the following
recurrence relation holds:

2(2n + 1)Sn = Dn+1 − Dn−1. (2.2)
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Finally, the third auxiliary result is:

Proposition 2.3. Let k be a non-negative integer. Then the two following
equations hold:

v3(
(

6k + 2
3k + 1

)
) = v3(

(
6k

3k

)
) = v3(

(
2k

k

)
) (2.3)

v3(
(

6k + 4
3k + 2

)
) = 1 + v3(2k + 1) + v3(

(
2k

k

)
) (2.4)

Proofs of (2.1) and (2.2) easily follow from (1.6) and (1.7). Furthermore,
the proof of (2.3) follow from Kummer’s theorem [3]. Namely, we recall that
Kummer’s theorem states that for given integers n ≥ m ≥ 0 and a prime
number p, the p-adic valuation of the binomial coefficient

(n
m

)
is equal to

the number of carryovers that occur when m and n − m are added in base
p.
Finally, the proof of (2.4) follows from (2.3) and by setting n = 3k + 1 in
the well-known equation:(

2n + 2
n + 1

)
= 2(2n + 1)Cn; (2.5)

where n is a non-negative integer.
Obviously, by the definition of Catalan numbers, it follows that

v3(Cn) = v3(
(

2n

n

)
) − v3(n + 1).

Therefore, we leave the proofs of the auxiliary results to the readers.

3 A Proof of the Eq. (1.2)
Substituting 2n + 1 for n in (2.1), we get

4(n + 1)S2n+1 = 3D2n+1 − D2n, (3.1)

where n is a non-negative integer.
From (3.1) it follows that

v3(n + 1) + v3(S2n+1) = v3(3D2n+1 − D2n). (3.2)

By (1.10) and (1.11), we know that

v3(3 · D2n+1) = 1 + v3(D2n+1) > 1 + v3(D2n) > v3(D2n). (3.3)

61



J. Mikić

From (3.3) it follows that

v3(3D2n+1 − D2n) = v3(D2n). (3.4)

Furthermore, by (3.4), (3.2) becomes

v3(n + 1) + v3(S2n+1) = v3(D2n). (3.5)

Finally, by (1.10), we have gradually:

v3(n + 1) + v3(S2n+1) = v3(
(

2n

n

)
), (3.6)

v3(S2n+1) = v3(
(

2n

n

)
) − v3(n + 1), (3.7)

v3(S2n+1) = v3( 1
n + 1

·
(

2n

n

)
), (3.8)

v3(S2n+1) = v3(Cn). (3.9)

The last equation proves the assertion (1.2).

4 A Proof of (1.3)
We give a proof of (1.3) for the cases n−2 is divisible by 3 and n is divisible
by 3.
Substituting 2n + 2 for n in (2.2), we get

2(4n + 5)S2n+2 = D2n+3 − D2n+1, (4.1)

where n is a non-negative integer.
By (4.1), it follows that

v3(4n + 5) + v3(S2n+2) = v3(D2n+3 − D2n+1). (4.2)

The first case:
Let n − 2 be divisible by 3. Then n = 3k + 2, where k is a non-negative
integer. Since v3((4(3k + 2) + 5) = v3(12k + 13) = 0, we get from equation
(4.2):

v3(S6k+6) = v3(D6k+7 − D6k+5). (4.3)

By (1.11) and Kummer’s theorem, it can be shown that

v3(D6k+7) = 1 + v3(2k + 1) + v3(
(

2k

k

)
) − v3(k + 1). (4.4)
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Furthermore, by (1.11), it follows that

v3(D6k+5) = 2 + v3(2k + 1) + v3(
(

2k

k

)
). (4.5)

By Eqns. (4.4) and (4.5), it follows that v3(D6k+7) < v3(D6k+5). Therefore,
we conclude that

v3(D6k+7 − D6k+5) = v3(D6k+7). (4.6)
By using (4.4) and (4.6), (4.3) becomes

v3(S6k+6) = 1 + v3(2k + 1) + v3(
(

2k

k

)
) − v3(k + 1). (4.7)

By setting n = 3k + 2 in (1.3), the equation (1.3) gradually becomes

v3(S6k+6) = 1 + v3(6k + 5) + v3(C3k+2),

= 1 + v3(
(

6k + 4
3k + 2

)
) − v3(3k + 3),

= 1 + (1 + v3(2k + 1) + v3(
(

2k

k

)
)) − 1 − v3(k + 1),

= 1 + v3(2k + 1) + v3(
(

2k

k

)
) − v3(k + 1). (4.8)

By using (4.7) and (4.8), it follows that (1.3) is true if n = 3k + 2. This
completes the proof of the first case.
The second case:
Let n be a non-negative integer divisible by 3. Then n = 3k, where k ≥ 0.
By setting n = 3k in (4.1), we obtain that

v3(S6k+2) = v3(D6k+3 − D6k+1). (4.9)
By using (1.11) and (2.4), it can be shown that

v3(D6k+3) = 1 + v3(6k + 3) + v3(
(

6k + 2
3k + 1

)
),

= 2 + v3(2k + 1) + v3(
(

2k

k

)
). (4.10)

On the other hand, by using (1.11) and (2.3), it can be shown that

v3(D6k+1) = 1 + v3(
(

2k

k

)
). (4.11)
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By using (4.10) and (4.11), it follows that v3(D6k+1) < v3(D6k+3). Hence,
we conclude that

v3(D6k+3 − D6k+1) = v3(D6k+1). (4.12)

Therefore, by using (4.12), it follows that

v3(S6k+2) = 1 + v3(
(

2k

k

)
). (4.13)

By setting n = 3k in (1.3), the equation (1.3) gradually becomes

v3(S6k+2) = 1 + v3(6k + 1) + v3(C3k),

= 1 + v3(
(

6k

3k

)
) − v3(3k + 1),

= 1 + v3(
(

2k

k

)
). (4.14)

By using (4.13) and (4.14), it follows that (1.3) is true for n = 3k. This
completes the proof of the second case.

Remark 4.1. The case n − 1 is divisible by 3 of (1.3) must be treated with
another approach (see, for example, [1, Theorem 17, p. 19] or [4, Section 12,
p. 25]) due to the fact that

v3(D6k+5) = v3(D6k+3) = 1 + v3(D6k+4). (4.15)

We conjecture that the following equation is true:

v3(3D6k+4 − D6k+3) = v3(D6k+3), (4.16)

where k ≥ 0.
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