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On two sequences and their hypersequences

Daniele Parisse

Abstract
We study the hypersequences

(
a

(r)
n

)
n∈N0

and
(
b

(r)
n

)
n∈N0

, r ∈ N0, of
the two sequences an := (−1)n and bn := (−1)n+1n, n ∈ N0. First, we
show the relationship between these hypersequences. Subsequently,
we prove that both the rth rows and the nth columns of the arrays(
a

(r)
n

)
and

(
b

(r)
n

)
, r, n ∈ N0, satisfy linear recurrence relations. This

yields alternative representations of a
(r)
n and b

(r)
n . Finally, we deter-

mine their ordinary generating functions and the recurrence relations
of two special subsequences.

Keywords: Hypersequences; recurrences; binomial coefficients; Stirling
numbers of the first kind; ordinary generating functions; Catalan numbers.
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1 Introduction
The sequence (cn) = (0, 1, −1, 2, −2, 3, −3, 4, −4, . . .) is the sequence
A001057 in the On-Line Encyclopedia of Integer Sequences (OEIS ®) [3]. It
is the sequence of all integers and can be described as follows: start from 0
and go forward and backward with increasing step sizes. Accordingly, the
sequence can be defined by

c2n = −n, c2n+1 = n + 1, n ≥ 0, (1.1)

showing that the function c : N0 → Z, n 7→ (−1)n+1 ·
⌊

n+1
2
⌋

is a bijection.
Since the successor function s : N0 → N, n 7→ n + 1, is also a bijection, this
shows that N, N0, and Z have the same cardinality, namely ℵ0, the first
transfinite cardinal number.

(Daniele Parisse) Airbus Defence and Space GmbH, Germany, daniele.parisse@t-
online.de
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Lemma 1.1. The sequence (cn)n∈N0 satisfies the recurrences

c0 = 0, cn+1 = cn + (n + 1)(−1)n, n ≥ 0, (1.2)

and
c0 = 0, cn+1 = −cn + 1

2
(
1 + (−1)n), n ≥ 0, (1.3)

which have the solution

cn =
n∑

k=0
(−1)k+1k = 1

4
(
1−(2n+1)(−1)n) = 2·

(⌊n + 1
2

⌋)2
−
(

n + 1
2

)
, (1.4)

for n ≥ 0.

Proof. By definition, we have c0 = 0. Let n be even, that is n = 2m, m ∈
N0. Then, by (1.1) we have cn+1 = c2m+1 = m + 1, and cn = c2m = −m.
Therefore, cn + (n + 1)(−1)n = c2m + (2m + 1)(−1)2m = −m + (2m + 1) =
m+1 = c2m+1 = cn+1. Now, let n be odd, that is n = 2m+1, m ∈ N0. Then,
again by (1.1) we have cn+1 = c2m+2 = −(m + 1), and cn = c2m+1 = m + 1.
Hence, cn+1 − cn = c2m+2 − c2m+1 = −(m + 1) − (m + 1) = −(2m + 2) =
(2m + 2) · (−1)2m+1 = (n + 1) · (−1)n, and these two cases prove (1.2).
Let n be even, that is n = 2m, m ∈ N0. Then, by (1.1) we have cn+1 + cn =
c2m+1+c2m = m+1+(−m) = 1 = (1+(−1)2m)/2. Similarly, for n odd, that
is n = 2m+1, m ∈ N0, we have again by (1.1) cn+1 + cn = c2m+2 + c2m+1 =
−(m + 1) + m + 1 = 0 = (1 + (−1)2m+1)/2, and this proves (1.3).
The solution of the recurrence (1.2) can be obtained by the method of
backward substitution and noting that c0 = 0

cn = cn−1 − n · (−1)n

= cn−2 − (n − 1) · (−1)n−1 − n · (−1)n

...
= c0 − 1 · (−1)1 − 2 · (−1)2 − · · · − (n − 1) · (−1)n−1 − n · (−1)n

= −
n∑

k=1
(−1)kk =

n∑
k=0

(−1)k+1k,

and this is the first formula of (1.4).
Adding Equations (1.2) and (1.3) (for n−1 instead of n), we get the second
formula of (1.4).
Finally, let us evaluate Sn :=

∑n
k=0(−1)k+1k. It is well-known that Tn :=∑n

k=0 k =
(n+1

2
)
. Then Sn+Tn =

∑n
k=0

(
1+(−1)k+1)k = 2

∑b n+1
2 c

k=1 (2k−1) =
2
(⌊

n+1
2
⌋)2. Solving this equation for Sn, we obtain the third formula of

(1.4).

68



On two sequences and their hypersequences

Remark 1.2. By (1.2) we obtain two alternative recurrences for (cn),
namely

c0 = 0, c1 = 1, cn+2 = cn − (−1)n, n ≥ 0, (1.5)
and

c0 = 0, c1 = 1, c2 = −1, cn+3 = −cn+2 + cn+1 + cn, n ≥ 0, (1.6)

because cn+2 = cn+1 − (n + 2)(−1)n = cn + (n + 1)(−1)n − (n + 2)(−1)n =
cn − (−1)n. This proves (1.5). Consequently, cn+3 = cn+1 + (−1)n, cn+2 =
cn − (−1)n. The recurrence relation (1.6) now follows by adding these two
equations.
Note that the first formula on the right-hand side of (1.4) states that
(cn) is the sequence of partial sums of bn := (−1)n+1n, n ∈ N0, that is
(bn) = (0, 1, −2, 3, −4, 5, −6, 7, −8, . . .) (the sequence A181983) and that
the sequence of nonnegative integers (n) = (0, 1, 2, 3, 4, 5, . . .) (the sequence
A001477) is given by ((−1)n+1bn)n∈N0 . Hence, in this paper we shall study
the hypersequences of (bn)n∈N0 and those of the closely related sequence
an := (−1)n, n ∈ N0 (the sequence A033999).

2 Hypersequences of (an)n∈N0 and (bn)n∈N0

Let (fn)n∈N0 be an arbitrary sequence (of real or complex numbers). Then
the hypersequence of the rth generation is defined recursively for all r ∈ N

and n ∈ N0 as

f (r)
n :=

n∑
k=0

f
(r−1)
k , and f (0)

n := fn. (2.1)

For r = 1, we have f
(1)
n =

∑n
k=0 f

(0)
k =

∑n
k=0 fk and this is the se-

quence of partial sums of (fn)n∈N0 ; for r = 2, we have f
(2)
n =

∑n
k=0 f

(1)
k =∑n

k=0
(∑k

j=0 fj
)

and this is the sequence of partial sums of (f (1)
n )n∈N0 , and

so on.
By means of this definition we obtain the array

(
f

(r)
n
)
, where r ∈ N0 is the

row and n ∈ N0 is the column of this array (see Table 1).
The next theorem is well-known (see, e.g., [1, Proposition 2, p. 945] for the
special case f i

0 = f0 for all i ∈ {1, . . . , r}). The second equation follows
from the fact that k ∈ {0, 1, . . . , n} if and only if n − k ∈ {0, 1, . . . , n}.
Theorem 2.1. Let (fn)n∈N0 be an arbitrary sequence (of real or complex
numbers) and (f (r)

n )n∈N0, r ∈ N0, be the hypersequence of the rth generation
as defined before. Then for all r ∈ N and n ∈ N0

f (r)
n =

n∑
k=0

(
n + r − 1 − k

r − 1

)
fk =

n∑
k=0

(
r + k − 1

k

)
fn−k. (2.2)
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r\n 0 1 2
0 f0 f1 f2
1 f0 f0 + f1 f0 + f1 + f2
2 f0 2f0 + f1 3f0 + 2f1 + f2
3 f0 3f0 + f1 6f0 + 3f1 + f2
4 f0 4f0 + f1 10f0 + 4f1 + f2
5 f0 5f0 + f1 15f0 + 5f1 + f2

r\n 3 4
0 f3 f4
1 f0 + f1 + f2 + f3 f0 + f1 + f2 + f3 + f4
2 4f0 + 3f1 + 2f2 + f3 5f0 + 4f1 + 3f2 + 2f3 + f4
3 10f0 + 6f1 + 3f2 + f3 15f0 + 10f1 + 6f2 + 3f3 + f4
4 20f0 + 10f1 + 4f2 + f3 35f0 + 20f1 + 10f2 + 4f3 + f4
5 35f0 + 15f1 + 5f2 + f3 70f0 + 35f1 + 15f2 + 5f3 + f4

Table 1: The hypersequences (f (r)
n )n∈N0 , r ∈ N0, of (fn)n∈N0

Applying this theorem to the sequences fn := an and fn := bn, n ∈ N0, we
obtain the following results (see Table 2 and Table 3).

Corollary 2.2. For all r, n ∈ N0 :

a(r)
n =

n∑
k=0

(
n + r − 1 − k

r − 1

)
(−1)k =

n∑
k=0

(
r + k − 1

k

)
(−1)n−k (2.3)

b(r)
n =

n∑
k=0

(
n + r − 1 − k

r − 1

)
(−1)k+1k =

n∑
k=0

(
r + k − 1

k

)
(−1)n−k+1(n − k).

(2.4)

The next corollary gives the relationship between these hypersequences.

Corollary 2.3. For all r, n ∈ N0 :

a(r)
n = b(r)

n + b
(r)
n+1 (2.5)

and, conversely,

b(r)
n =

n∑
k=1

(−1)k+1a
(r)
n−k =

n−1∑
k=0

(−1)n−k+1a
(r)
k . (2.6)
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Proof. By (2.4) we have

b
(r)
n+1 =

n+1∑
k=0

(
r + k − 1

k

)
(−1)n+2−k(n + 1 − k)

=
n+1∑
k=0

(
r + k − 1

k

)
(−1)n−k(n − k) +

n+1∑
k=0

(
r + k − 1

k

)
(−1)n−k

= −
n∑

k=0

(
r + k − 1

k

)
(−1)n−k+1(n − k) +

(
r + n

n + 1

)
+

+
n∑

k=0

(
r + k − 1

k

)
(−1)n−k −

(
r + n

n + 1

)
= −b(r)

n + a(r)
n ,

and this proves (2.5).
Conversely, applying the method of backward substitution we obtain from
(2.5)

b(r)
n = −b

(r)
n−1 + a

(r)
n−1

= −
(

− b
(r)
n−2 + a

(r)
n−2

)
+ a

(r)
n−1 = b

(r)
n−2 − a

(r)
n−2 + a

(r)
n−1

= −b
(r)
n−3 + a

(r)
n−3 − a

(r)
n−2 + a

(r)
n−1

= · · · · · · · · · · · · · · · · · · · · ·

= (−1)nb
(r)
0 +

n∑
k=1

(−1)k+1a
(r)
n−k.

Together with b
(r)
0 = 0 this proves the second formula of (2.6). Finally, the

first formula of (2.6) follows from the fact that k ∈ {1, 2, . . . , n} if and only
if n − k ∈ {0, 1, . . . , n − 1}.

This corollary shows that knowing
(
b

(r)
n
)

n∈N0
, we obtain

(
a

(r)
n
)

n∈N0
from

(2.5) and, conversely, knowing
(
a

(r)
n
)

n∈N0
, we obtain

(
b

(r)
n
)

n∈N0
from (2.6).

The hypersequences of the rth generation
(
a

(r)
n
)

and
(
b

(r)
n
)

satisfy the fol-
lowing recurrences:

Theorem 2.4. For all r ∈ N0 :

a
(r)
0 = 1, a

(r)
n+1 = −a(r)

n +
(

r + n

n + 1

)
, n ≥ 0, (2.7)

b
(r)
0 = 0, b

(r)
1 = 1, b

(r)
n+1 = −2b(r)

n − b
(r)
n−1 +

(
r + n − 1

n

)
, n ≥ 1. (2.8)
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r\n 0 1 2 3 4 5 6 7 8 9 10
0 1 -1 1 -1 1 -1 1 -1 1 -1 1
1 1 0 1 0 1 0 1 0 1 0 1
2 1 1 2 2 3 3 4 4 5 5 6
3 1 2 4 6 9 12 16 20 25 30 36
4 1 3 7 13 22 34 50 70 95 125 161
5 1 4 11 24 46 80 130 200 295 420 581
6 1 5 16 40 86 166 296 496 791 1211 1792
7 1 6 22 62 148 314 610 1106 1897 3108 4900

Table 2: The hypersequences of (an)n∈N0

r\n 0 1 2 3 4 5 6 7 8 9 10
0 0 1 -2 3 -4 5 -6 7 -8 9 -10
1 0 1 -1 2 -2 3 -3 4 -4 5 -5
2 0 1 0 2 0 3 0 4 0 5 0
3 0 1 1 3 3 6 6 10 10 15 15
4 0 1 2 5 8 14 20 30 40 55 70
5 0 1 3 8 16 30 50 80 120 175 245
6 0 1 4 12 28 58 108 188 308 483 728
7 0 1 5 17 45 103 211 399 707 1190 1918

Table 3: The hypersequences of (bn)n∈N0
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Proof. By (2.4) it follows that for all n ≥ 0

a
(r)
n+1 =

n+1∑
k=0

(
r + k − 1

k

)
(−1)n+1−k

= −
n∑

k=0

(
r + k − 1

k

)
(−1)n−k +

(
r + n

n + 1

)

= −a(r)
n +

(
r + n

n + 1

)
.

Together with a
(r)
0 = 1 this proves the assertion (2.7).

By (2.5) and (2.7) it follows that b
(r)
n = −b

(r)
n−1 + a

(r)
n−1 and a

(r)
n−1 = −a

(r)
n +(r+n−1

n

)
for all n ≥ 1. Substituting the last equation into the first one, we

get b
(r)
n = −b

(r)
n−1 − a

(r)
n +

(r+n−1
n

)
. By (2.5) it follows that b

(r)
n = −b

(r)
n−1 −(

b
(r)
n + b

(r)
n+1

)
+
(r+n−1

n

)
. Solving this equation for b

(r)
n+1, we obtain (2.8) valid

for all n ≥ 1. The initial values for all r ≥ 0 are by definition b
(r)
0 = 0 and

b
(r)
1 =

∑1
k=0 b

(r−1)
k = b

(r−1)
0 + b

(r−1)
1 = b

(r−1)
1 = b

(r−2)
1 = · · · = b

(0)
1 = 1, and

this proves (2.8).

We now derive alternative representations of a
(r)
n and b

(r)
n .

Theorem 2.5. For all n ∈ N0 :

a(0)
n = (−1)n, 2a(r+1)

n = a(r)
n +

(
r + n

n

)
, r ≥ 0, (2.9)

with the solution

a(r)
n = 1

2r

(
(−1)n +

r−1∑
k=0

2k

(
n + k

k

))
, (2.10)

and for r ≥ 1

b(0)
n = (−1)n+1n,

b(1)
n = 1

4
(
1 − (2n + 1)(−1)n),

4b(r+1)
n = 4b(r)

n − b(r−1)
n +

(
r + n − 1

n − 1

)
,

(2.11)

with the solution

b(r)
n =

n−1∑
k=0

(−1)n−k+1a
(r)
k = (−1)n+1

2r
·
(

n +
r−1∑
j=0

2j
( n−1∑

k=0
(−1)k

(
k + j

j

)))
.

(2.12)
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Proof. First, we derive a recurrence relation of a
(r)
n with respect to r. By

definition, we have a
(0)
n = an = (−1)n. By (2.3) and by the addition formula

for binomial coefficients ( [2, Equation (5.8)]) it follows that for all r ≥ 0

a(r+1)
n =

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k

=
n∑

k=0

(
r + k − 1

k

)
(−1)n−k + (−1)n

n∑
k=0

(
r + k − 1

k − 1

)
(−1)n−k.

The first term on the right-hand side is by definition equal to a
(r)
n , whereas

the second term is equal to
n∑

k=1

(
r + k − 1

k − 1

)
(−1)n−k =

n−1∑
k=0

(
r + k

k

)
(−1)n−(k+1)

= −
n−1∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k.

Hence,

a(r+1)
n = a(r)

n −
n−1∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k

= a(r)
n −

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k +

(
r + n

n

)

= a(r)
n − a(r+1)

n +
(

r + n

n

)
.

By solving this equation for a
(r+1)
n , the statement (2.9) follows.

The solution of this recurrence relation can be obtained by the method of
backward substitution. However, we simply check that the right-hand side
of equation (2.10) satisfies (2.9). For r = 0 we get (−1)n. Furthermore,

2a(r+1)
n = 2 · 1

2r+1

(
(−1)n +

r∑
k=0

2k

(
n + k

k

))

= 1
2r

(
(−1)n +

r−1∑
k=0

2k

(
n + k

k

)
+ 2r

(
n + r

r

))

= 1
2r

(
(−1)n +

r−1∑
k=0

2k

(
n + k

k

))
+
(

n + r

r

)

= a(r)
n +

(
r + n

n

)
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by the symmetry property of the binomial coefficients. This proves the
formula (2.10).
By (2.4) and by the addition formula for binomial coefficients it follows that
for all r ≥ 0

b(r+1)
n =

n∑
k=0

(
r + 1 + k − 1

k

)
(−1)n−k+1(n − k)

=
n∑

k=0

(
r + k − 1

k

)
(−1)n−k+1(n − k)+

+
n∑

k=0

(
r + k − 1

k − 1

)
(−1)n−k+1(n − k),

where the first term on the right-hand side is by definition equal to b
(r)
n , and

the second term for k instead of k − 1 is equal to
n∑

k=1

(
r + k − 1

k − 1

)
(−1)n−k+1(n − k) =

=
n−1∑
k=0

(
r + k

k

)
(−1)n−(k+1)+1(n − (k + 1))

= −
n−1∑
k=0

(
r + k

k

)
(−1)n−k+1(n − k) −

n−1∑
k=0

(
r + k

k

)
(−1)n−k.

The first sum on the right-hand side is by definition equal to

−
n−1∑
k=0

(
r + k

k

)
(−1)n−k+1(n−k) = −

n∑
k=0

(
r + k

k

)
(−1)n−k+1(n−k) = b(r+1)

n ,

whereas the second sum is equal to

−
n−1∑
k=0

(
r + k

k

)
(−1)n−k = −

n∑
k=0

(
r + k

k

)
(−1)n−k +

(
r + n

n

)

= −a(r+1)
n +

(
r + n

n

)
.

Hence, we obtain

b(r+1)
n = b(r)

n − b(r+1)
n − a(r+1)

n +
(

r + n

n

)

and solving for b
(r+1)
n

2b(r+1)
n = b(r)

n − a(r+1)
n +

(
r + n

n

)
, (2.13)
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or, for r − 1 instead of r

2b(r)
n = b(r−1)

n − a(r)
n +

(
r − 1 + n

n

)
. (2.14)

Subtracting Equation (2.14) from the double of Equation (2.13) we obtain

4b(r+1)
n − 2b(r)

n = 2b(r)
n − b(r−1)

n − 2a(r+1)
n + a(r)

n + 2
(

r + n

n

)
−
(

r − 1 + n

n

)
.

Finally, solving for b
(r+1)
n and using the recurrence relation (2.9) and the

addition formula for binomial coefficients, we obtain

4b(r+1)
n = 4b(r)

n − b(r−1)
n − a(r)

n −
(

r + n

n

)
+ a(r)

n + 2
(

r + n

n

)
−
(

r − 1 + n

n

)

= 4b(r)
n − b(r−1)

n +
(

r + n − 1
n − 1

)
.

This recurrence relation is linear and of second order and has the initial
values b

(0)
n = (−1)n+1n and by Lemma (1.1) b

(1)
n = cn = 1

4
(
1−(2n+1)(−1)n

)
.

This proves the assertion (2.11).
We now show that g(r, n) :=

∑n−1
k=0(−1)n−k+1a

(r)
k solves the re-

currence (2.11). First, we have g(0, n) =
∑n−1

k=0(−1)n−k+1a
(0)
k =∑n−1

k=0(−1)n−k+1(−1)k = (−1)n+1n and since by (2.10) a
(1)
n =

∑n
k=0(−1)k =

1
2(1 + (−1)n) it follows that

g(1, n) =
n−1∑
k=0

(−1)n−k+1a
(1)
k = 1

2
(−1)n+1

n−1∑
k=0

(
(−1)k + 1

)
= 1

2
(−1)n+1

(1
2

(1 + (−1)n−1) + n

)
= 1

4
(
1 − (2n + 1)(−1)n).

Consequently, g(r, n) satisfies the two initial conditions. Furthermore, by
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(2.9) and by the addition formula of the binomial coefficients, we have

4g(r + 1, n) − 4g(r, n) + g(r − 1, n) =

=
n−1∑
k=0

(−1)n−k+1(4a
(r+1)
k − 4a

(r)
k + a

(r−1)
k

)
=

n−1∑
k=0

(−1)n−k+1
(
2 ·
(
2a

(r+1)
k − a

(r)
k

)
−
(
2a

(r)
k − a

(r−1)
k

))

=
n−1∑
k=0

(−1)n−k+1
(

2
(

r + k

k

)
−
(

r − 1 + k

k

))

=
n−1∑
k=0

(−1)n−k+1
(

r + k

k

)
+

n−1∑
k=0

(−1)n−k+1
(

r + k − 1
k − 1

)

and the right-hand side is equal to
(r+n−1

n−1
)
, since with k instead of k − 1

the second sum can be expressed as follows:

n−1∑
k=0

(−1)n−k+1
(

r + k − 1
k − 1

)
=

n−2∑
k=0

(−1)n−k

(
r + k

k

)

= −
n−2∑
k=0

(−1)n−k+1
(

r + k

k

)
.

It follows that g(r, n) = b
(r)
n . Furthermore, by (2.10) it follows that

b(r)
n =

n−1∑
k=0

(−1)n−k+1a
(r)
k =

n−1∑
k=0

(−1)n−k+1 · 1
2r

(
(−1)k +

r−1∑
j=0

2j

(
k + j

j

))

= 1
2r

n−1∑
k=0

(−1)n+1 + 1
2r

n−1∑
k=0

(−1)n−k+1
r−1∑
j=0

2j

(
k + j

j

)

= (−1)n+1n

2r
+ (−1)n+1

2r

n−1∑
k=0

(−1)k
r−1∑
j=0

2j

(
k + j

j

)

= (−1)n+1

2r

(
n +

r−1∑
j=0

2j
( n−1∑

k=0
(−1)k

(
k + j

j

)))
,

and this proves (2.12).

Note that by (2.3) and (2.10) we have shown that for all r, n ∈ N0, we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k = 1

2r

(
(−1)n +

r−1∑
k=0

2k

(
n + k

k

))
, (2.15)
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and by (2.4) and (2.12) we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k+1(n − k) =

= (−1)n+1

2r

(
n +

r−1∑
j=0

2j( n−1∑
k=0

(−1)k

(
k + j

j

)))
.

(2.16)

By (2.10) the first few values of a
(r)
n for fixed r ≥ 0 are:

i) r = 0: a
(0)
n = (−1)n, (A033999)

ii) r = 1: a
(1)
n = 1

2
(
1 + (−1)n

)
, (A059841, characteristic function of

even numbers)

iii) r = 2: a
(2)
n = 1

4
(
1+(−1)n

)
+ 1

2(n+1), (A004526(n+1), nonnegative
integers repeated)

iv) r = 3: a
(3)
n = 1

8
(
1 + (−1)n

)
+ 1

4(n + 1)(n + 3), (A002620(n + 2))

v) r = 4: a
(4)
n = 1

16
(
1 + (−1)n

)
+ 1

24(n + 1)(n + 3)(2n + 7), (A002623)

vi) r = 5: a
(5)
n = 1

32
(
1 + (−1)n

)
+ 1

48(n + 1)(n + 3)2(n + 5), (A001752).

In particular, setting r = 3 and n = 2m, m ∈ N0, in (2.15) gives the
sequence of the square numbers A000290(m + 1)

2m∑
k=0

(
k + 2

2

)
(−1)k = (m + 1)2,

while for n = 2m + 1, m ∈ N0, we get the sequence of the oblong numbers
A002378(m + 1)

2m+1∑
k=0

(
k + 2

2

)
(−1)k−1 = (m + 1)(m + 2).

On the other hand, again by (2.10) the first few sequences of a
(r)
n for fixed

n ≥ 0 are:

i) n = 0: a
(r)
0 = 1, (A000012, the all 1’s sequence)

ii) n = 1: a
(r)
1 = r − 1, (A023443)

iii) n = 2: a
(r)
2 = 1

2
(
r2 − r + 2

)
, (A152947)
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iv) n = 3: a
(r)
3 = 1

6
(
r3 + 5r − 6

)
, (A283551)

v) n = 4: a
(r)
4 = 1

24
(
r4 + 2r3 + 11r2 − 14r + 24

)
, (after removing the

first term this is the sequence A223718)

vi) n = 5: a
(r)
5 = 1

120
(
r5 +5r4 +25r3 −5r2 +94r −120

)
, (after removing

the first two terms, this is the sequence A257890).

Remark 2.6. A look at the polynomials n! · a
(r)
n (for fixed n ≥ 0) shows

that their coefficients in descending powers of r are given by the triangle
as shown in Table 4. This table is up to the sign of the columns for odd
k given by the triangle A054651. By a slight modification of the formula
given in A054651, these coefficients U(n, k), n, k ∈ N0, are given by

U(n, k) = (−1)k
k∑

i=0

[
i + n − k

n − k

]
n!

(i + n − k)!
, (2.17)

where
[i+n−k

n−k

]
is an unsigned Stirling number of the first kind. Hence, by

(2.3) we have

n∑
k=0

(
r + k − 1

k

)
(−1)n−k = 1

n!

n∑
k=0

U(n, k)rn−k

=
n∑

k=0

(
(−1)k

k∑
i=0

[
i + n − k

n − k

]
1

(i + n − k)!

)
rn−k.

(2.18)

Note that U(n, n) = (−1)n · n! with the first few values
(1, −1, 2, −6, 24, −120, 720, −5040, . . .) (A133942) and that the sequence
of the row sums is S1(n) =

∑n
k=0 U(n, k) = 1+(−1)n

2 · n! (A005359) with
the first few values (1, 0, 2, 0, 24, 0, 720, 0, . . .), while the sequence of the
alternating row sums given by S2(n) =

∑n
k=0(−1)kU(n, k) with the first

few values (1, 2, 4, 12, 52, 250, 1608, 10808, . . .) is not in the OEIS.

By (2.12) the first few values of b
(r)
n for fixed r ≥ 0 are:

i) r = 0: b
(0)
n = (−1)n+1n (A181983)

ii) r = 1: b
(1)
n = 1

4
(
1−(2n+1)(−1)n

)
(A001057, canonical enumeration

of integers)

iii) r = 2: b
(2)
n = 1

4(n + 1)
(
1 − (−1)n

)
(A142150(n + 1), the nonnegative

integers interleaved with 0’s)
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n\k 0 1 2 3 4 5 6 7
0 1
1 1 -1
2 1 -1 2
3 1 0 5 -6
4 1 2 11 -14 24
5 1 5 25 -5 94 -120
6 1 9 55 75 304 -444 720
7 1 14 112 350 1099 -364 3828 -5040

Table 4: Triangle U(n, k) of the coefficients (in descending powers of r) of
the polynomials n! · a

(r)
n

iv) r = 3: b
(3)
n = 1

16
(
2n2 + 6n + 3 − (2n + 3)(−1)n

)
(removing the first

term this is the sequence A008805(n − 1), n ≥ 1, triangular numbers
repeated)

v) r = 4: b
(4)
n = 1

48
(
2n3 + 12n2 + 19n + 6 − 3(n + 2)(−1)n

)
(A006918)

vi) r = 5: b
(5)
n = 1

192
(
2n4 + 20n3 + 64n2 + 70n + 15 − 3(2n + 5)(−1)n

)
(removing the first term this is the sequence A002624(n − 1), n ≥ 1).

In particular, setting r = 3 and n = 2m, m ∈ N0, in (2.16) gives the
sequence of the triangular numbers A000217

2m∑
k=0

(
k + 2

2

)
(−1)k−1(2m − k) = 1

2
m(m + 1) =

(
m + 1

2

)
,

while for n = 2m + 1, m ∈ N0, we also get the sequence of the triangular
numbers A000217(m + 1)

2m+1∑
k=0

(
k + 2

2

)
(−1)k−1(2m + 1 − k) = 1

2
(m + 1)(m + 2) =

(
m + 2

2

)
.

On the other hand, again by (2.12) the first few sequences of b
(r)
n for fixed

n ≥ 0 are:

i) n = 0: b
(r)
0 = 0, (A000004, the zero sequence)

ii) n = 1: b
(r)
1 = 1, (A000012, the all 1’s sequence)

iii) n = 2: b
(r)
2 = r − 2, (A023444)

80

https://oeis.org/A008805
https://oeis.org/A006918
https://oeis.org/A002624
https://oeis.org/A000217
https://oeis.org/A000217
https://oeis.org/A000004
https://oeis.org/A000012
https://oeis.org/A023444


On two sequences and their hypersequences

n\k 0 1 2 3 4 5 6
0 0
1 1
2 1 -2
3 1 -3 6
4 1 -3 14 -24
5 1 -2 23 -70 120
6 1 0 35 -120 444 -720
7 1 3 55 -135 1024 -3108 5040

Table 5: Triangle V (n, k) of the coefficients (in descending powers of r) of
the polynomials (n − 1)! · b

(r)
n .

iv) n = 3: b
(r)
3 = 1

2
(
r2 − 3r + 6

)
, (after removing the first term this is

the sequence A152948)

v) n = 4: b
(r)
4 = 1

6
(
r3 − 3r2 + 14r − 24

)
, (this sequence is not in the

OEIS)

vi) n = 5: b
(r)
5 = 1

24
(
r4 − 2r3 + 23r2 − 70r + 120

)
, (this sequence is not

in the OEIS).

Remark 2.7. A look at the polynomials (n − 1)! · b
(r)
n (for fixed n ≥ 0)

shows that their coefficients V (n, k), n, k ∈ N0, in descending powers of r
are given by the triangle as shown in Table 5. Note also that V (n, n − 1) =
(−1)n+1 · n!, n ≥ 1, (sequence A155456(n+2)) with the first few values
(1, −2, 6, −24, 120, −720, 5040, . . .) and that the sequence of the row sums is
T1(n) =

∑n−1
k=0 V (n, k) = (−1)n+1n! · 2n+3

4 , n ≥ 1, (after removing the first
term, the unsigned sequence |T1(n)| is A052558) with the first few values
(0, 1, −1, 4, −12, 72, −360, 2880, . . .), while the sequence of the alternating
row sums given by T2(n) =

∑n−1
k=0(−1)kV (n, k) with the first few values

(0, 1, 3, 10, 42, 216, 1320, 9366, . . .) is not in the OEIS.

3 Generating functions and two special subse-
quences

We now determine the ordinary generating functions for
(
a

(r)
n
)

n∈N0
and(

b
(r)
n
)

n∈N0
, denoted by Fr(s) and Gr(s), respectively. We recall that the

ordinary generating function for the sequence (fn)n∈N0 is defined as the
(formal) power series ∑∞

n=0 fnsn.
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Proposition 3.1. The ordinary generating function for a
(r)
n is given by

Fr(s) = 1
1 + s

· 1
(1 − s)r

, (3.1)

and that for b
(r)
n is given by

Gr(s) = s

(1 + s)2 · 1
(1 − s)r

= s

1 + s
· Fr(s). (3.2)

Proof. By definition and by [2, Equation (7.21)], we have for all r ≥ 1:

Fr(s) =
∞∑

n=0
a(r)

n sn =
∞∑

n=0

( n∑
k=0

a
(r−1)
k

)
sn = 1

1 − s
Fr−1(s).

The solution of this recurrence relation is given by Fr(s) = F0(s) · 1
(1−s)r .

Since the generating function F0(s) for an = (−1)n is given by the geometric
series F0(s) =

∑∞
n=0(−1)nsn = 1

1−(−s) = 1
1+s , the assertion (3.1) is proved.

Similarly, by definition and by [2, Equation (7.21)], we have for all r ≥ 1:

Gr(s) =
∞∑

n=0
b(r)

n sn =
∞∑

n=0

( n∑
k=0

b
(r−1)
k

)
sn = 1

1 − s
Gr−1(s)

which has the solution Gr(s) = G0(s)· 1
(1−s)r . The generating function G0(s)

for bn = (−1)n+1n can be determined in the following way

G0(s) =
∞∑

n=0
(−1)n+1nsn =

∞∑
n=0

(−1)n+1(n + 1 − 1)sn

= 1
s

∞∑
n=0

(−1)n+1(n + 1)sn+1 −
∞∑

n=0
(−1)n+1sn

= 1
s

∞∑
n=0

(−1)nnsn +
∞∑

n=0
(−1)nsn = 1

s
G0(s) + 1

1 + s
.

Solving for G0(s), we get the formula (3.2).

Finally, we consider the two subsequences (dn)n∈N0 and (en)n∈N0 , defined as
dn := a

(n)
n and en := b

(n)
n , n ≥ 0, which form the main diagonal of the arrays(

a
(r)
n
)

and
(
b

(r)
n
)
, respectively (see Table 2 and Table 3). We recall that

(C(n))n∈N0 is the sequence of the Catalan numbers, the sequence A000108,
defined by C(n) := 1

n+1
(2n

n

)
, n ≥ 0.
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Proposition 3.2. The sequences (dn)n∈N0 and (en)n∈N0 satisfy the recur-
rences

d0 = 1, 2dn+1 = −dn + (3n + 1)C(n), n ≥ 0, (3.3)

and

e0 = 0, e1 = 1, 4en+1 + 4en + en−1 = (9n − 5)C(n − 1), n ≥ 1. (3.4)

The solutions are dn =
∑n

k=0
(n+k−1

k

)
(−1)n−k and en =∑n

k=0
(n+k−1

k

)
(−1)n−k+1(n − k), n ≥ 0.

Proof. By definition, we have d0 = a
(0)
0 = 1. By (2.7) for r = n+1 it follows

that
dn+1 = a

(n+1)
n+1 = −a(n+1)

n +
(

2n + 1
n + 1

)
. (3.5)

Furthermore, by (2.9) for r = n, we have

2a(n+1)
n = a(n)

n +
(

2n

n

)
= dn +

(
2n

n

)
.

Hence, substituting this equation into (3.5) multiplied by 2, we get

2dn+1 = −2a(n+1)
n + 2

(
2n + 1
n + 1

)
= −dn −

(
2n

n

)
+ 2

(
2n + 1

n

)
,

and this is the recurrence (3.3), since 2
(2n+1

n

)
−
(2n

n

)
=
(2n

n

)
(22n+1

n+1 − 1) =
3n+1
n+1

(2n
n

)
= (3n + 1)C(n). The solution of the recurrence (3.3) is given by

(2.3) for r = n.
By definition, we have e0 = b

(0)
0 = 0 and e1 = b

(1)
1 = 1. For r = n + 1, we

get from (2.8)

en+1 = b
(n+1)
n+1 = −2b(n+1)

n − b
(n+1)
n−1 +

(
2n

n

)
, n ≥ 1. (3.6)

For r = n, we get from (2.11)

4b(n+1)
n = 4b(n)

n −b(n−1)
n +

(
2n − 1
n − 1

)
= 4en−b(n−1)

n + 1
2

(
2n

n

)
, n ≥ 1, (3.7)

and for r = n and n − 1 instead of n

4b
(n+1)
n−1 = 4b

(n)
n−1 − b

(n−1)
n−1 +

(
2n − 2
n − 2

)
= 4b

(n)
n−1 − en−1 +

(
2n − 2

n

)
, n ≥ 1.

(3.8)
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Furthermore, by definition of the hypersequence, we have

en = b(n)
n = b

(n)
n−1 + b(n−1)

n , n ≥ 1, (3.9)

and
b(n+1)

n = b
(n+1)
n−1 + b(n)

n = b
(n+1)
n−1 + en, n ≥ 1. (3.10)

Setting b
(n)
n−1 = α, b

(n+1)
n−1 = β, b

(n−1)
n = γ, and b

(n+1)
n = δ, we obtain from

(3.6), (3.7), (3.8), (3.9) and (3.10) the following linear system consisting of
5 equations for the 4 unknowns α, β, γ, and δ.

en+1 = −2δ − β +
(

2n

n

)

4δ = 4en − γ + 1
2

(
2n

n

)

4β = 4α − en−1 +
(

2n − 2
n

)
en = α + γ

δ = β + en.

After algebraic elimination of the values α, β, γ, δ, the equation 4en+1 +
4en + en−1 = 2

(2n
n

)
+
(2n−2

n

)
remains, which is (3.4), since 2

(2n
n

)
+
(2n−2

n

)
=

(2n−2)!
(n−1)!(n−1)! ·

(
2 (2n−1)2n

n·n + n−1
n

)
=
(2(n−1)

n−1
)9n−5

n = (9n − 5)C(n − 1), n ≥ 1.
The solution of the recurrence (3.4) is given by (2.4) for r = n.

The sequence (dn)n∈N0 with the first few values
(1, 0, 2, 6, 22, 80, 296, 1106, . . .) is the sequence A072547, while the se-
quence (en)n∈N0 with the first few values (0, 1, 0, 3, 8, 30, 108, 399, . . .) is not
in the OEIS.
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