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Abstract
In this paper, we give full details for an intrinsic approach, using the
author’s New Brahmagupta formulas, to the computation of Heron
polynomials for cyclic polygons (up to n = 8). A less complete ac-
count was already given in [20] (and used by S. Moritsugu, see ref.
[27]) following the author’s talk at the International Congress of Math-
ematicians in Hyderabad, India, in 2010. We also mention a new ap-
proach by multivariate discriminants based on the fact that the cyclic
polygons are critical points of the area functional.

1 Introduction
Finding explicit equations for the area or circumradius of polygons inscribed
in a circle in terms of side lengths is a classical subject (cf. [1]). For triangle
/ cyclic quadrilaterals, we have the famous Heron / Brahmagupta formulae.
In 1994. D. P. Robbins found a minimal area equation for cyclic pen-
tagons/hexagons by a method of undetermined coefficients (cf. [5]). This
method could hardly be used for heptagons due to computational complex-
ity (143307 equations).
In [8], by using covariants of binary quintics, a concise minimal hep-
tagon/octagon area equation was obtained as a quotient of two resultants,
which in expanded form has almost one million terms. It is not clear if this
approach could be effectively used for cyclic polygons with nine or more
sides.
In [15] and [28], by using the Wiener-Hopf factorization approach, we have
obtained a very explicit minimal heptagon/octagon circumradius equation
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(only 13 pages formula) in Pellian form (= a combination of two squares
of smaller polynomials whose coefficients have at most four digits). A non-
minimal area equation is also obtainable by this method. Both methods are
somehow external.
But, based on our new intermediate Brahmagupta formulas (2.6) and (2.7),
we have succeeded in finding a direct intrinsic proof of the Robbins formulas
for the area (and also for circumradius and area times circumradius) of cyclic
hexagons.
Earlier, an intricate direct elimination of diagonals for cyclic hexagons was
painful (see the footnote on the page 117) (the case of a pentagon was much
easier, cf. [21]).
We also get a simple(st) system of equations (EQ1, EQ2, EQ3 on page
121) for the area (and area times circumradius) of cyclic octagons.
It seems remarkable that our approach, with the help of Gröbner basis
techniques, leads to minimal equations (for any concrete instances we have
tested), which is not the case with the iterated resultants approach.
Inspired by our observation on page 119 at the end we present a new method
of multivariate discriminants, for finding area equation for cyclic octagons,
of a master equation by using the result (cf. [16]) that cyclic polygons are
critical points of the area functional.
For reader convenience we recommend a somewhat older survey [9] by I.
Pak and references [22]– [27] by S. Moritsugu who used our reference [20]
in [27].
We hope that our method of dissecting cyclic polygons into cyclic quadrilat-
erals is concordant with well known Grothendieck’s well-known reconstruc-
tion principle.
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2 Cyclic quadrilaterals

We first recall some basic formulas for cyclic quadrilaterals ABCD with
sides and diagonals of lengths a = |AB|, b = |BC|, c = |CD|, d = |DA| and
e = |AC|, f = |BD| whose vertices lie on a circle of radius R.

• Ptolemy’s relation (convex case):

ef = ac + bd (2.1)

• Dual Ptolemy’s relation:

(ab + cd)e = (ad + bc)f (= 4SR) (2.1’)

• Diagonal equation:

(ab + cd)e2 = (ac + bd)(ad + bc) (2.2)

• Area equation (Brahmagupta’s formula, 625. AD):

16S2 = 2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2)−a4−b4−c4−d4+8abcd
(2.3)

which, in a more popular form, reads as

16S2 = (−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d) (2.3’)

• Circumradius equation (Parameshavara’s formula, 1400. AD):

R2 = (ab + cd)(ac + bd)(ad + bc)
(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

(2.4)
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• Area times circumradius equation:
Let Z = 4SR, then

Z2 = (ab + cd)(ac + bd)(ad + bc) (2.5)

which in a case of a triangle (d = 0) reduces to the well known relation

4SR = abc. (2.5’)

For the reader’s convenience, one of the simplest methods for obtaining
Brahmagupta’s formula makes use of trigonometry: for the interior angles
at B and D we have B+D = 180◦, implying cos D = − cos B, sin D = sin B.
By the Law of Cosine, we obtain 2(ab + cd) cos B = a2 + b2 − c2 − d2.
For area S = 1

2ab sin B + 1
2cd sin D = 1

2(ab + cd) sin B. Hence
16S2 = (2ab+2cd)2−(a2+b2−c2−d2)2 = (2s−2a)(2s−2b)(2s−2c)(2s−2d),
where 2s = a+b+c+d. This completes the classical proof of Brahmagupta’s
formula.

Our main contribution is the following discovery: the Key Lemma and a
new (atomic) Brahmagupta’s formula.
This lemma will be crucial in all our subsequent calculations concerning the
elimination of diagonals in cyclic polygons.

Key Lemma: (Intermediate Brahmagupta’s formula)
In any convex cyclic quadrilateral, we have

8Sha = 2bcd + (b2 + c2 + d2 − a2)a (2.6)

where ha denotes the height (positive or negative) of the center of the
circumcircle with respect to the side AB.

In the case of a nonconvex quadrilaterals, we can formally obtain all the
relations by simply allowing side lengths to be negative (e.g. by replacing a
with −a).
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Proof of the Key Lemma. S = S′ + S′′ ⇒
4RS = 4RS′ + 4RS′′ = abe + cde (Dual Ptolemy’s relation)

By Law of Cosine, dual Ptolemy’s and Diagonal equation for ha ≥ 0 we

have: ha = R cos γ = R
b2 + e2 − a2

2be
= (ab + cd)(b2 + e2 − a2)

8Sb

= 2bcd + (b2 + c2 + d2)a − a3

8S
.

(Case ha < 0 is similar.) ■
Let Sa = aha

2 be the signed area of the characteristic triangle △OAB deter-
mined by the side AB (of length a) and circumcenter O of a cyclic quadri-
lateral ABCD. Then we get

Corollary 2.1. (New Brahmagupta’s formulas)

16SSa = a2(b2 + c2 + d2 − a2) + 2abcd (2.7)

and three more formulas, by cyclically permuting a, b, c and d.

Note that by adding all four such formulas we get the original Brah-
magupta’s formula because

S = Sa + Sb + Sc + Sd.

For general quadrilaterals in a plane, we have:

• Bretschneider’s formula ( [2]) or Staudt’s formula (1842):

16S2 = 4e2f2 − (a2 − b2 + c2 − d2)2. (2.8)
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For cyclic quadrilaterals, in view of (2.1), it gives another form of
(2.3):

16S2 = 4(ac + bd)2 − (a2 − b2 + c2 − d2)2. (2.3”)

The formula (2.8) is the simplest formula for the area of the quadrilateral in
terms of its sides and diagonals. But there are infinitely many other ways
to do so, since these 6 quantities satisfy Euler’s four-point relation

e2f2(a2 + b2 + c2 + d2 − e2 − f2) =
= e2(a2 − b2)(d2 − c2) + f2(a2 − d2)(b2 − c2)+

+ (a2 − b2 + c2 − d2)(a2c2 − b2d2)
(2.9)

This is only a quadratic equation with respect to a square of each parameter.
The Euler’s four point relation follows from the Cayley–Menger determinant
for the volume V of a tetrahedron with edges of lengths a, b, c, d, e, f if we
set V = 0.

Remark 2.2. In a solution of a problem by J.W.L.Glaisher: With four
given straight lines to form a quadrilateral inscribable in a circle, A.Cayley
(in 1874.) observed the following identity, equivalent to (2.9):[

(a2 + b2 + c2 + d2 − e2 − f2)(ef + ac + bd) − 2(ad + bc)(ab + cd)·
]

·(ef − ac − bd) = [(ab + cd)e − (bc + ad)f ]2
(2.9’)

which directly shows that Ptolemy’s relation (2.1) implies the dual
Ptolemy’s relation (2.1’).
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3 Cyclic hexagons

Cyclic hexagon ABCDEF inscribed in a circle of radius R, with side lengths
a = |AB|, b = |BC|, c = |CD|, d = |DE|, e = |EF |, f = |FA|, y = main
diagonal, x,z = small diagonals.

• Main diagonal equation

Let y = |AD| denote the length of the main diagonal of the cyclic hexagon
ABCDEF . Then we may think of the hexagon ABCDEF as made up of
two quadrilaterals with a common side AD, both having the same circum-
radius R. Thus using the formula (2.4) twice we get equality

(R2 =)
(de + fy)(df + ey)(ef + dy)

(−d + e + f + y)(d − e + f + y)(d + e − f + y)(d + e + f − y)
=

= (ab + cy)(ac + by)(bc + ay)
(−a + b + c + y)(a − b + c + y)(a + b − c + y)(a + b + c − y)

(3.1)
leading to a 7–th degree equation

(def − abc)y7 + · · · = 0
for the length of the main diagonal y.

115



D. Svrtan

With substitutions

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc (3.2)
U = d2 + e2 + f2, V = d2e2 + d2f2 + e2f2, W = def (3.2’)

we can express the area S′ (resp. S′′) of the quadrilateral ABCD (resp.
ADEF ) as follows

16S′2 = 4v−u2+8wy+2uy2−y4, 16S′′2 = 4V −U2+8Wy+2Uy2−y4 (3.3)

Then (3.1) becomes equivalent to

P
main diag.
6 ≡ −S′′2

(
wy3 + vy2 + uwy + w2

)
+

+ S′2
(
Wy3 + V y2 + UWy + W 2

)
= 0 (3.1’)

(i.e. (w − W )y7 + (v − V )y6 + · · · + (4v − u2)W 2 − (4V − U2)w2 = 0)
(3.1”)

By letting f = 0, we obtain the diagonal equation for a cyclic pentagon
ABCDE:

P
diag.
5 ≡

abc y7 + (a2b2 + a2c2 + b2c2 − d2e2)y6 + · · · + a2b2c2(d2 − e2) = 0

(cf. Bowman [4]).

• Small diagonal equation

Let x = |AC| denote the length of a ”small” diagonal in the cyclic hexagon
ABCDEF . By (2.2) we obtain the equation

(ab + cy)x2 = (ac + by)(bc + ay)

by which we can eliminate y in our main diagonal equation (3.1”). This
gives our small diagonal equation, which has degree 7 in x2:

P
small diag.
6 ≡

(abc − def)(abd − cef)(abe − cdf)(abf − cde)x14 + (. . .)x12 + · · · +
+(a2 − b2)4(acd − bef)(ace − bdf)(acf − bde)(ade − bcf)
(adf − bce)(aef − bcd) = 0

(3.4)
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By letting f = 0 we obtain

P
small diag.
6

∣∣∣∣
f=0

= a3b3P
diag.
5

(
P

diag.
5

)∗
(3.4’)

where P
diag.
5 ≡ cde x7 + · · · = 0 and

(
P

diag.
5

)∗
is obtained by changing

sign of an odd number of side lengths c, d, e.

• Area equation: Naive approach

A naive approach to get the area equation of cyclic hexagon would be to
write the area S of our hexagon as

S = S′ + S′′ (3.5)

Then by rationalizing the equation (3.5) we obtain an equation of degree 4
in y:

(S2 + S′2 − S′′2)2 − 4S2S′2 = 0 (3.6)

where S′2 and S′′2 are given by Brahmagupta’s formula (3.3). More explic-
itly, in terms of the squared area A = (4S)2 we have

Q ≡
(A + 4(v − V ) + U2 − u2 + 8(w − W )y + 2(u − U)y2)2−
− 4A(4v − u2 + 8wy + 2uy2 − y4) = 0

(3.6’)

By computing the resultant of this equation and the main diagonal equation
(3.1’) w.r.t. y we obtain a degree 14 polynomial in A.

Resultant
(

Eq(3.6′), P
main diag.
6 , y

)
= F1F2

both of whose factors have degree 7 in A:

F1 = (w − W )2A7 + · · ·
F2 = A7 + (7u2 + 7U2 − 10uU − 24v − 24V )A6 + · · ·

The true equation (obtained first by Robbins in 1994. by undetermined coef-
ficients method) is given by F2 (it has 2042 monomials), and the extraneous
factor F1 (which has 8930 monomials) is 4 time bigger1.

• Area equation: new approach leading to an intrinsic proof.
1The computation with MAPLE 9.5 on a PC with 2GHz and 2GB RAM took ≈ 300

hours (in year 2004). Nowadays with MAPLE 12 on a 64–bit PC with 8GB it takes ≈ 3
hours.
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The complications with the extraneous factor in the previous proof were
probably caused by using squaring operation twice in order to get the
equation (3.6) (or (3.6’)). So we are searching a simpler equation relating
the area S and the main diagonal. After a long struggle we obtained an
extraordinary simple relationship given in the following

Key Lemma. The area S of the cyclic hexagon ABCDEF and areas
S′ and S′′ of the cyclic quadrilaterals ABCD and ADEF obtained by
subdivision with the main diagonal of length y = |AD| satisfy the following
relations:

a) (y3 − (a2 + b2 + c2)y − 2abc)S′′ + (y3 − (d2 + e2 + f2)y − 2def)S′ = 0

b) (y3−(a2+b2+c2)y−2abc)S+((a2+b2+c2−d2−e2−f2)y+2(abc−def))S′ =
0

Proof. a) Let x = |AC|, y = |AD|, z = |DF |. Let S′
1, S′

2 S′′
1 and S′′

2 be
the areas of triangles ABC, ACD, ADF and DEF respectively. Then, by
(2.5’) we have 4S′

1R = abx, 4S′
2R = cxy, 4S′′

1 R = fyz, 4S′′
2 R = dez. So we

have 4S′R = (ab + cy)x, 4S′′R = (fy + de)z. This implies

S′′

S′ = fy + de

ab + cy
· z

x

The diagonal equation for the main diagonal y = |AD| in the middle quadri-
lateral ACDF : (cx + fz)y2 = (cf + xz)(fx + cz) can be rewritten as

cx(y2 − f2 − z2) = fz(−y2 + c2 + x2)

Now we have

S′′

S′ = fy + de

ab + cy
· y2 − f2 − z2

x2 + c2 − y2 · c

f
= c

f

(fy + de)(y2 − f2) − (fy + de)z2

(ab + cy)(c2 − y2) + (ab + cy)x2

Finally we use the diagonal equations for small diagonals x and z in respec-
tive quadrilaterals

(ab + cy)x2 = (ac + by)(bc + ay), (fy + de)z2 = (df + ey)(ef + dy)

and by simplifying we get

S′′

S′ = y3 − (d2 + e2 + f2)y − 2def

2abc + (a2 + b2 + c2)y − y3

b) follows from a) by substituting S′′ = S − S′.
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By writing the equation b) in Key Lemma with shorthand notations (3.2)
and (3.2’)

(y3 − uy − 2w)S + ((u − U)y + 2(w − W ))S′ = 0

and multiplying it by 2S, 2S′ respectively and using the relation

2SS′ = S2 + S′2 − S′′2

obtained from (3.5) by squaring, we obtain the following
KEY EQUATIONS:

Q1 := 2(y3 − uy − 2w)S2 + ((u − U)y + 2(w − W ))(S2 + S′2 − S′′2) = 0

Q2 := (y3 − uy − 2w)(S2 + S′2 − S′′2) + 2((u − U)y + 2(w − W ))S′2 = 0

where S′2 and S′′2 are given by Brahmagupta’s formulas (3.3).

MAIN THEOREM. The resultant of the Key Equations with respect to
y gives the minimal degree 7 equation for the squared area A = (4S)2 of
cyclic hexagon.

Proof. The minimal polynomial

α6 = Resultant(Q1, Q2, y)/C = A7+(7(u2+U2)−10uU −24(v+V ))A6+· · ·

where C = 4
[
4(W − w)3 + (u − U)3(wU − uW )

]
.

Remark. Observe that 16Q1 = [2A + 2(u − U)2]y3 + · · ·
Similarly the polynomial Q in equation (3.6’) has the form

Q =
[
4A + 2(u − U)2

]
y4 + · · ·

If we define

Q3 := Q − 2 · 16Q1
= 4(−uy2 − 6wy − 4v + u2)A + (4(v + w − V − W ) + U2 − u2 + A)·

· (A + 4(v − V ) + U2 − u2 + 8(w − W )y + 2(u − U)y2)

then we also get

α6 = Resultant(Q3, 16Q1, y)/(−8A2)

New Observation! By using the fact that cyclic polygons are critical points
of area (c.f. [16]) we can obtain New Theorem which uses the theory of
discriminants := discrim(Q, y)/(214A2) = A7 + · · · . Where Q is given in
(3.6’).
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4 Area equations of cyclic octagons and (hep-
tagons)

We trisect cyclic octagon ABCDEFGH, by two diagonals AD and EH into
three quadrilaterals ABCD, ADEH and EFGH whose areas we denote by
S1, S2 and S3 respectively. The area S of ABCDEFGH is then equal to

S = S1 + S2 + S3 (4.1)

By Key Lemma a) applied to hexagons ABCDEH and ADEFGH we ob-
tain the following equations:

(2jz + (i + z2)y − y3)S1 + (2w + uy − y3)S2 = 0 (4.2)
(2jy + (i + y2)z − z3)S3 + (2W + Uz − z3)S2 = 0 (4.3)

where we have used the following abbreviations:

y = |AD|, z = |EH|

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc

U = e2 + f2 + g2, V = e2f2 + e2g2 + f2g2, w = efg

i = d2 + h2, j = dh

(4.4)

Furthermore the Brahmagupta formulas for the 16 times squared areas Ai =
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16S2
i , i = 1, 2, 3 can be written now as follows:

A1 = 4v − u2 + 8wy + 2uy2 − y4 (4.5)
A2 = 4(j + yz)2 − (y2 + z2 − i)2 (4.6)
A3 = 4V − U2 + 8Wz + 2Uz2 − z4 (4.7)

(For A1, A3 cf. (3.3), for A2 cf. (2.3”) from Preliminaries!)
By equating the circumradius formulas for cyclic quadrilaterals ABCD and
ADEH (resp. ABCD and EFGH) we obtain two equations:

EQ1 := (4v − u2 + 8wy + 2uy2 − y4)(jzy3 + (iz2 + j2)y2 + (i + z2)jzy+
+(jz)2) − (4(j + yz)2 − (y2 + z2 − i)2)(wy3 + vy2 + uwy + w2) = 0

(4.8)
EQ2 := (4v − u2 + 8wy + 2uy2 − y4)(Wz3 + V z2 + UWz + W 2)−

− (4V − U2 + 8Wz + 2Uz2 − z4)(wy3 + vy2 + uwy + w2) = 0
(4.9)

Our next aim is to get one more equation (as simple as possible) relating the
lengths y and z of diagonals and the squared area A = 16S2 of our cyclic
octagon. Here is a result of a many years long search:

Theorem 4.1. (Fundamental equation involving area of cyclic octagons)
Let A = 16S2 be the squared area of any cyclic octagon. Then we have the
following equation of degree 6 in y and z and linear in A:

EQ3 := αγ(A + η) + 2(α − β)(δ − γ)A2 = 0 (4.10)

where

α = 2jz + iy + yz2 − y3, β = 2w + uy − y3

γ = 2jy + iz + y2z − z3, δ = 2W + Uz − z3

η = u2 + U2 − i2 − 4v − 4V + 4j2 − 8wj − 8Wz + 8jyz+
+ 2(i − u)y2 + 2(i − U)z2 + 2y2z2

Proof. We start by squaring the equation (4.1)

S2 = S2
1 + S2

2 + S2
3 + 2S1S2 + 2S1S3 + 2S2S3 (4.11)

Solving (4.2) for S1 and (4.3) for S2 yields:

S1 = −β

α
S2, S3 = − δ

γ
S2 (4.12)
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Then we substitute these only into the mixed terms of (4.11). This gives:

S2 = S2
1 + S2

2 + S2
3 + 2

(
−β

α
+ βδ

αγ
− δ

γ

)
S2

2

By multiplying the last equation by 16 and using that Ai = 16S2
i , A = 16S2

we obtain

αγ(A − A1 + A2 − A3) + 2(α − β)(δ − γ)A2 = 0

and set
η = −A1 + A2 − A3

and the result follows by (4.5), (4.6) and (4.7).

Remark 4.2. By using Gröbner basis for {EQ1, EQ2, EQ3} we get mini-
mal equation α7 (α8) for squared area (A = 16 Area2) of cyclic heptagons
(octagons) in concrete instances very fast.

Remark 4.3. Maley M.F., Robins D.P. and Roskies J. ( [8]) obtained
explicit formulas for α7 and α8 in terms of elementary symmetric functions
of sides lengths squared.

α7 = 210155Res(F̃ , G̃, u3)
u4

2Res(F̃1, F̃2, u3)

Half a year later we have fully expanded α7 which has 955641 terms with
up to 40-digits coefficients (approx. 5000 pages).

Remark 4.4. For ζ7, the Z(= 4SR)-polynomial, by a similar method, we
obtained explicit formula with 31590 terms with up to 11 digits coefficients.

Remark 4.5. For ρ7 = R2-equation of cyclic heptagon, by a different tech-
nique, we obtained a 15 pages output in a condensed (Pellian) form – a
quadratic form of two smaller polynomials whose coefficients have up to
4 digits coefficients in terms of new quantities (which are certain linear
combinations of elementary symmetric functions of side lengths squared)
published explicitly in [28].

5 Area equations for cyclic octagons by using bi-
variate discriminants

We start with a cyclic octagon ABCDEFGH, trisected by two diagonals
AD and EH into three quadrilaterals ABCD, ADEH and EFGH whose
areas are S1, S2 and S3 respectively. The area S of ABCDEFGH is then

S = S1 + S2 + S3 . (5.1)

122



Intrinsic geometry of cyclic polygons via new Brahmagupta’s formula
revisited

For the squared areas Ai = 16S2
i , i = 1, 2, 3 we have the formulas (4.5 . . .

4.7) relying on the abbreviations (4.4).
The rationalized form of (4.1) can be written compactly as follows:[

(A − A1 − A2 − A3)2 − 4 (A1A2 + A1A3 + A2A3)
]2

− 64AA1A2A3 = 0 .

(⋆)
(This is in fact a general Brahmagupta polynomial evaluated at a2

i = Ai,
i = 1, 2, 3, a2

4 = A).
By inserting
A1 = 4v − u2 + 8wy + 2uy2 − y4 from (4.5),
A2 = 4(j + yz)2 − (y2 + z2 − i)2 from (4.6) and
A3 = 4V − U2 + 8Wz + 2Uz2 − z4 from (4.7)

with
y = |AD|, z = |EH|

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc

U = e2 + f2 + g2, V = e2f2 + e2g2 + f2g2, w = efg

i = d2 + h2, j = dh
from (4.4) we obtain a master equation

M(A, u, v, w, U, V, W, i, j, y, z) = 0 .

Then the area equation is the discriminant of this master equation!
We conjecture similar results for arbitrary even sided cyclic polygons.
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