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Normal edge-colorings and superpositions: an
overview

Jelena Sedlar and Riste Škrekovski

Abstract
A normal 5-edge-coloring of a cubic graph is a coloring such that for
every edge, the number of distinct colors incident to its end-vertices
is 3 or 5 (and not 4). The well-known Petersen Coloring Conjec-
ture is equivalent to the statement that every bridgeless cubic graph
has a normal 5-edge-coloring. All 3-edge-colorings of a cubic graph
are obviously normal, so in order to establish the conjecture, it is
sufficient to consider only snarks. The most general known method
for constructing snarks is superposition. In this paper, we give an
overview of our results on the normal 5-edge-colorings of superposi-
tioned snarks. A family of superpositioned snarks considered here is
obtained from a snark G by superpositioning vertices and edges along
a cycle C of G by two specific supervertices and by superedges of the
form Hx,y, where H is any snark and x, y a pair of non-adjacent ver-
tices in H. We assume that a snark G has a normal 5-edge-coloring
σ and we extend σ to a superpositioned snark G̃. Our consideration
starts with superpositions by the Petersen graph P10, where we en-
counter problems with superpositions along odd cycles. We provide
an example of a superposition by P10 along an odd cycle C in which
σ cannot be extended to a superposition. This does not contradict
the Petersen coloring conjecture, since the superposition does have
a normal 5-edge-coloring, but not such that it is an extension of σ.
We generalize our approach to superpositions by any superedge Hx,y,
where d(x, y) ≥ 3. For such superpositions, we give two sufficient con-
ditions under which σ can be extended to a superposition. These
conditions are applied to superpositions by Hypohamiltonian snarks
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and by Flower snarks, showing thus that some of the former and all
of the latter have a normal 5-edge-colorings. Since the Petersen Col-
oring Conjecture implies some other well-known classical conjectures
like the Ford-Fulkerson Conjecture, these results immediately yield
some known results on this conjecture.

Keywords: normal edge-coloring; cubic graph; snark; superposition; Pe-
tersen Coloring Conjecture.
2020 Mathematics Subject Classification: 05C15.

1 Introduction
A k-edge-coloring of a graph G is a function σ : E(G) → {1, . . . , k}. If an
edge-coloring assigns distinct colors to any two adjacent edges in G, it is said
to be proper. Throughout the paper, we will omit the word ’proper’ tacitly
assuming properness unless explicitly stated otherwise. For any vertex v ∈
V (G), the set of colors associated with the edges incident to v is denoted
by σ(v).

Definition 1.1. Consider a bridgeless cubic graph G, a proper edge-coloring
σ, and an edge uv ∈ E(G). The edge uv is defined as poor if |σ(u) ∪ σ(v)| =
3, and as rich if |σ(u) ∪ σ(v)| = 5.

An edge-coloring of a cubic graph G is said to be a normal edge-coloring
if all edges of G are either poor or rich. This concept was first introduced
by Jaeger in [10]. The normal chromatic index of G, written as χ′

N (G), is
the minimum value of k for which a normal k-edge-coloring exists. Notably,
χ′

N (G) is always at least 3, and it can never equal 4.
The Petersen Coloring Conjecture is one of the most prominent open prob-
lems in graph theory. This conjecture is particularly challenging to prove, as
it has been shown to imply several other well-known conjectures, including
the Berge-Fulkerson Conjecture and the (5,2)-cycle-cover Conjecture. In-
terestingly, the Petersen Coloring Conjecture can be reformulated in terms
of normal edge-colorings, as noted in [10].

Conjecture 1.2. If G is a bridgeless cubic graph, then χ′
N (G) ≤ 5.

It is evident that Conjecture 1.2 holds for every cubic graph G that admits
a proper 3-edge-coloring, as such a coloring is a normal edge-coloring where
all edges are poor. By Vizing’s theorem, every cubic graph is either 3-
edge-colorable or 4-edge-colorable. Therefore, to confirm Conjecture 1.2, it
suffices to show that it applies to all bridgeless cubic graphs that are not
3-edge-colorable.
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Superpositioning snarks. Cubic graphs that are not 3-edge-colorable
are commonly referred to as snarks [5, 21]. To exclude trivial cases, the
definition of a snark often includes additional conditions related to connec-
tivity. However, these conditions are not crucial for the purposes of this
paper. Hence, we adopt a broader definition, considering a snark to be
any bridgeless cubic graph that is not 3-edge-colorable. Some families of
snarks have already been shown to admit normal 5-edge-colorings; see, for
instance, [4, 7].
The most general method currently known for generating new snarks from
existing ones is the process of superposition [1, 3, 11, 12, 16]. Since this
paper explores certain snarks created through superposition, we begin by
introducing the method.

Definition 1.3. A multipole M = (V, E, S) is defined by a set of vertices
V = V (M), a set of edges E = E(M), and a set of semiedges S = S(M).
A semiedge is either incident to a single vertex or paired with another
semiedge, forming what is known as an isolated edge within the multipole.

A : A′ :

Figure 1: Supervertices A and A′, with connectors S1, S2, and S3, where
S1 is a 1-connector, and S2 and S3 are 3-connectors.

An example of a multipole can be found in Figure 1. For any vertex v in a
multipole M , the degree dM (v) is defined as the total number of edges and
semiedges in M that are incident to v. A multipole M is termed cubic if
every vertex of M has degree 3. For instance, both multipoles depicted in
Figure 1 are cubic. Throughout this paper, we focus exclusively on cubic
multipoles.
Now, let us introduce some terminology related to the semiedges of a mul-
tipole M . A multipole M is referred to as a k-pole when the total number
of semiedges, |S(M)|, equals k. If the set of semiedges S is divided into n
subsets Si such that |Si| = ki, the multipole is called a (k1, . . . , kn)-pole and
is denoted as M = (V, E, S1, . . . , Sn). These subsets Si are referred to as
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the connectors of M . A connector Si containing ki semiedges is specifically
called a ki-connector.

Definition 1.4. A supervertex (respectively, a superedge) is defined as a
cubic multipole with three (respectively, two) connectors.

We specifically define the supervertices A and A′ as shown in Figure 1.
These two supervertices will be the focus of our analysis throughout the
paper. Next, we introduce a particular type of superedge relevant to our
discussion. Let G be a snark, and let u and v be two non-adjacent vertices
in G. The superedge Gu,v is constructed by removing the vertices u and v
from G, and replacing the three edges incident to u (and similarly for v)
with three semiedges in Gu,v, which collectively form a connector.

Definition 1.5. A proper superedge is defined as either an isolated edge or
a superedge Gu,v where G is a snark.

While the definition of a proper superedge given in [11] is much broader, the
simplified definition presented here is sufficient for the scope of this paper.
In our work, we will also explore normal edge-colorings of multipoles, as the
concept of normal edge-coloring extends naturally to these structures. Let
us now formalize this notion.
For a multipole M = (V, E, S), a (proper) k-edge-coloring is defined as a
function σ : E(M)∪E(S) → {1, . . . , k} such that no two edges or semiedges
sharing the same color are incident to the same vertex. Furthermore, a
normal edge-coloring of a multipole is a proper edge-coloring where every
edge is either rich or poor. It is important to note that this definition places
no restrictions on the coloring of semiedges.
For a cubic graph G = (V, E), we define two functions: V, which maps each
vertex v ∈ V to a supervertex V(v), and E , which maps each edge e ∈ E to a
superedge E(e). A superposition G(V, E) is constructed under the following
condition: semiedges of a connector in V(v) are matched with semiedges
of a connector in E(e) if and only if e is incident to v in G. Naturally,
this requires the connectors in V(v) and E(e) to have the same number of
semiedges.
Observe that the resulting graph G(V, E) is again cubic. Such a superposi-
tion is said to be proper if every superedge E(e) is proper. Additionally, we
assume that some vertices and edges of G may be superpositioned by them-
selves. Formally, such vertices are superpositioned by trivial supervertices
consisting of a single vertex with three incident semiedges, and such edges
by trivial superedges consisting of a single isolated edge.
The following theorem, as established in [11], applies to snarks of girth ≥ 5
that are cyclically 4-edge connected. However, it is worth noting that the
result remains valid for snarks with smaller girths as well.
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Theorem 1.6. For a snark G, any proper superposition G(V, E) is also a
snark.

Normal colorings of superpositioned snarks. Normal 5-edge-
colorings for certain families of superpositioned snarks are analyzed in the
series of papers [24–26]. All three papers consider snarks obtained from a
snark G by superpositioning the vertices and edges of a cycle C of G by
supervertices A or A′ and by superedges of the form Hx,y where H is any
snark and x, y a pair of nonadjacent vertices of H. In all three papers, the
same approach is used, where it is assumed that G does have a normal
5-edge-coloring σ and this coloring is then extended to a superposition. Pa-
pers [24] and [26] investigate the case when H = P10 for every edge of a
cycle C. With such a superposition, the problem with the construction of a
normal 5-edge-colorings arises when C is an odd-length cycle.
It is established that the problem is not inherent to the approach, as the
example of a snark G and its superposition is provided, where the super-
position does not have a normal 5-edge-coloring, which is an extension of
the coloring of G. Instead, the problem arises due to H = P10 being a small
snark of the diameter only two. Hence, in [25] the approach is extended
to a superopsition by any snark H and any pair of vertices x, y of H with
d(x, y) ≥ 3. Here, two sufficient conditions are given under which a superpo-
sition does have a normal 5-edge-coloring are given, the first one is applied
to some superpositions by Hypohamiltonian snarks and the other to all su-
perpositions by Flower snarks, showing thus that all these superpositions
have a normal 5-edge-coloring, thus the Petersen Coloring Conjecture is
verified for them. Since the Petersen Coloring Conjecture implies the Ford-
Fulkerson Conjecture, these results immediately yield the results of [14]. In
this paper, we give an overview of all these results.

2 Preliminaries
Let G be a snark, and let C = u0u1 · · · ug−1u0 represent a cycle of length g in
G. The edges of the cycle C are denoted as ei = uiui+1 for i = 0, . . . , g − 1,
where indices are taken modulo g. Additionally, let vi denote the neighbor
of ui that is distinct from ui−1 and ui+1, and define fi = uivi.
The supervertices A and A′ are defined as shown in Figure 1. For su-
peredges, we use Hx,y, where H is a snark and x, y are two non-adjacent
vertices of H. Observe that Hx,y contains a pair of 3-connectors, denoted
Sx and Sy. These connectors consist of the three semiedges that correspond
to halves of the three edges in H incident to x and y, respectively. We now
formally define the type of superpositions considered in this paper.
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Figure 2: A schematic representation of a superedge Bi in a superposition
GC(A, B), showing its left and right connectors along with their semiedges.
This representation will be assumed throughout the paper.

Definition 2.1. Let C = u0u1 · · · ug−1u0 be a cycle in a snark G, and let
ei = uiui+1 represent an edge of C for i = 0, . . . , g − 1. A superpositioned
snark GC(A, B) is a superposition of G such that:

• For every vertex ui of C, A(ui) ∈ {A, A′}.

• For every edge ei of C, B(ei) ∈ {Hx,y : H is a snark and x, y are
non-adjacent vertices of H}.

All other vertices and edges of G are superpositioned by themselves.

Note that the snark H used to construct a superedge Bi does not need
to be the same for different edges of the cycle C. The family of all such
superpositions is denoted by GC(A, B). For simplicity, we will write Ai

instead of A(ui) and Bi instead of B(ei).
In a superedge Bi, the connector that is matched with a connector of Ai

will be referred to as the left connector and denoted by Sl, while the con-
nector matched with Ai+1 will be called the right connector and denoted by
Sr. The three semiedges belonging to the left connector are called the left
semiedges, labeled as sl

1, sl
2, and sl

3. Similarly, the semiedges of the right
connector are the right semiedges, denoted as sr

1, sr
2, and sr

3. Figure 2 illus-
trates the schematic structure of a superedge that will be used consistently
throughout this paper.
When a superedge Bi is derived from a snark H by removing two non-
adjacent vertices x and y, it is written as Bi = Hx,y if the left connector
corresponds to Sx, and as Bi = Hy,x if the left connector corresponds to Sy.
It is useful to assume that the connection between a supervertex Ai and the
superedges Bi−1 and Bi is established as follows: first, the right semiedges of
Bi−1 are matched with the left semiedges of Bi. Then, one of the resulting
edges is subdivided to create the vertex ui of Ai. Since the identification of
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Figure 3: This figure demonstrates how a superedge Bi is connected to its
neighboring superedges Bi−1 and Bi+1, based on a permutation pi and a
dock di associated with Bi. In this example, pi = (1, 3, 2) and di = 2. The
figure also reveals that pi−1 = (2, 3, 1) and di+1 = 3.

semiedges between Bi−1 and Bi can occur in multiple ways, as illustrated
in Figure 3, we associate a permutation pi−1 of the set {1, 2, 3} with the
superedge Bi−1. This permutation specifies how the right semiedges sr

1,
sr

2, sr
3 of Bi−1 are reordered before being matched with the left semiedges

sl
1, sl

2, sl
3 of Bi. Specifically, the semiedge sr

p−1
i−1(j) of Bi−1 is matched with

the semiedge sl
j of Bi. The permutation pi−1 is referred to as a semiedge

permutation.
For instance, in Figure 3, the semiedge permutations are pi−1 = (2, 3, 1) and
pi = (1, 3, 2). When the specific permutation pi−1 is clear from the context,
we will write p−1

i−1(j) simply as j− for brevity.
Suppose that the edge created by semiedge identification is denoted by
sr

j−sl
j . Among these edges, one j ∈ {1, 2, 3} is selected as the index of

the edge to be subdivided to form the vertex ui. Since j corresponds to a
left semiedge in Bi, this choice is represented by j = di and is associated with
Bi. The value di, which determines the left semiedge of Bi to be connected
to the vertex ui of Ai, is called the dock index, and the semiedge sl

di
is

referred to as the dock semiedge. For example, in Figure 3, the dock indices
are di = 2 and di+1 = 3.
To summarize, each superedge Bi is associated with a permutation pi, which
determines how the right semiedges of Bi connect to the left semiedges of
Bi+1, and a dock index di, which specifies which left semiedge of Bi connects
to the vertex ui of Ai.

Submultipoles and their compatible colorings. We now focus on
normal 5-edge-colorings of a superposition GC(A, B). To proceed, we first
introduce the concepts of a submultipole and the restriction of a coloring to
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a submultipole.
Let M = (V, E, S) be a multipole. A multipole M ′ = (V ′, E′, S′) is called
a submultipole of M if V ′ ⊆ V , E′ ⊆ E, and S′ ⊆ S ∪ ES , where ES

represents the set of halves of edges in E. For a subset V ′ ⊆ V , a multipole
M ′ = M [V ′] is called an induced submultipole of M if:

• The vertex set is V ′.

• The edge set E′ includes all edges e ∈ E where both endpoints belong
to V ′.

• The semiedge set S′ includes all semiedges in M with endpoints in V ′,
along with the halves of edges in E that have exactly one endpoint in
V ′.

Now, let σ be a normal 5-edge-coloring of a cubic multipole M . The restric-
tion of σ to a submultipole M ′, denoted σ′ = σ|M ′ , is defined as follows:

• For each edge e ∈ E′, σ′(e) = σ(e).

• For each semiedge s ∈ S′ ∩ S, σ′(s) = σ(s).

• For each semiedge s ∈ S′ \ S, σ′(s) = σ(es), where es is the edge in
M whose semiedge is s.

Finally, let M1, . . . , Mk be cubic submultipoles of a cubic multipole M , and
let σi be a normal 5-edge-coloring of Mi for i = 1, . . . , k. Let M ′ denote
the submultipole of M induced by the union of vertices ∪k

i=1V (Mi). The
colorings σi are said to be compatible if there exists a normal 5-edge-coloring
σ′ of M ′ such that σ′|Mi

= σi for every i = 1, . . . , k.

Our approach to the coloring of a superposition Throughout the
paper, we assume that a snark G has a normal 5-edge-coloring σ, and we
wish to extend this coloring to a superposition G̃ ∈ GC(A, B). To be more
precise, let C be a cycle in G and denote by Mint a submultipole of G induced
by V (G)\V (C). By σ̃int we denote the restriction of σ to the submultipole
Mint. Notice that Mint is a submultipole of the superposition G̃ also. We
aim to construct a normal 5-edge coloring σ̃ of a superposition G̃ such that
the restriction of σ̃ to Mint equals σ̃int. We achieve this by constructing a
normal 5-edge-coloring σ̃i of each superedge Bi with particular properties
which assure that σ̃i−1, σ̃i and σ̃int are compatible in G̃ for every i. This
will directly imply the compatibility of all σ̃i and σ̃int, i.e. the existance of
a normal 5-edge-coloring of G̃.
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3 Superposition by the Petersen graph
The Petersen graph, being the smallest snark, serves as a natural starting
point for our study of superpositions where superedges are derived from this
graph. Specifically, in this section, we consider the superpositions defined
in Definition 2.1, where H = P10 for each edge ei ∈ E(C), i.e., Bi = (P10)u,v

for all i = 0, . . . , g − 1.

Figure 4: A normal 5-edge-coloring σ of the edges in G incident to the
vertices ui−1 and ui.

Figure 5: A normal 5-edge-coloring of Bi that is both right-side σ-
monochromatic and left-side σ-compatible, assuming di = 2.

To proceed, we first define the concept of the color scheme of a semiedge.
For a semiedge s in a cubic multipole M , the color scheme σ[s] is given by
σ[s] = (i, {j, k}), where i is the color of s and {j, k} is the set of the two
colors on the (semi)edges adjacent to s. Now, let s′ be another semiedge in
a multipole with the color scheme σ[s′] = (i′, {j′, k′}). The color schemes
σ[s] and σ[s′] are said to be consistent, denoted by σ[s] ≈ σ[s′], if i′ = i
and either {j′, k′} = {j, k} or {j′, k′} ∩ {i, j, k} = ∅. If the color schemes
σ[s] and σ[s′] are consistent, then identifying the semiedges s and s′ when
”gluing” two multipoles results in either a poor or rich edge.
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Next, we define a specific type of coloring for superedges used in our
construction. A normal 5-edge-coloring σ̃i of Bi is called right-side
σ-monochromatic if for every j ∈ {1, 2, 3}, the condition σ̃i[sr

j ] ≈
(σ(ei), {σ(ei−1), σ(fi)}) holds. For instance, if the edge-coloring σ of G
around vertex ui is as shown in Figure 4, then the coloring of Bi depicted
in Figure 5 is an example of a right-side σ-monochromatic coloring of Bi.
A normal 5-edge-coloring σ̃i of Bi is said to be left-side σ-compatible if the
following conditions are satisfied:

• σ̃i[sl
di

] ≈ (σ(ei), {σ(ei−1), σ(fi)}),

• σ̃i[sl
j ] ≈ (σ(ei−1), {σ(ei), σ(fi)}) for every j ∈ {1, 2, 3} \ {di}, and

• there exists a Kempe (σ(ei−1), σ(fi))-chain P l that connects the two
left semiedges sl

j where j ̸= di.

To illustrate this concept, assume the edge-coloring σ of G is as shown in
Figure 4. If di = 2, then the coloring of Bi depicted in Figure 5 is an example
of a left-side σ-compatible coloring of Bi.

Remark 3.1. Let σ̃i−1 be a right-side σ-monochromatic coloring of Bi−1,
σ̃i a left-side σ-compatible coloring of Bi, and σ̃int the restriction of σ to
Mint. The following holds:

• If A = A, then σ̃i−1, σ̃i, and σ̃int are compatible, meaning they com-
bine seamlessly.

• If A = A′, compatibility still holds, but σ̃i must be replaced by a
modified coloring σ̃′

i, which is obtained by swapping colors along the
Kempe chain P l.

Therefore, if every superedge Bi admits a normal 5-edge-coloring that is
simultaneously right-side σ-monochromatic and left-side σ-compatible, a
normal 5-edge-coloring of the entire superposition can be achieved. How-
ever, when di = 1, such a coloring of Bi would result in the semiedges sl

1
and sr

1 having the same color. Since these semiedges are incident to the
same vertex, this would violate the condition of a proper coloring. Thus,
we conclude the following.

Observation 3.2. A superedge Bi cannot admit a normal 5-edge-coloring
that is simultaneously right-side σ-monochromatic and left-side σ-compatible
in the case where di = 1.
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a) b)

Figure 6: Given a coloring σ of G as shown in Figure 4, this figure illustrates
σ-compatible colorings: σ̃i−1, which is left-side σ-compatible, and σ̃i, which
is right-side σ-monochromatic. The two cases shown are: a) Ai = A and b)
Ai = A′, both with di−1 = di = 1.

To address this issue, we group certain pairs of consecutive superedges into
larger ”chunks.” By doing so, it becomes possible to ensure that these larger
chunks are both right-side σ-monochromatic and left-side σ-compatible.
This concept is illustrated in Figures 6 and 7. Using this strategy, we can
demonstrate that when di ̸= 1 for at least one superedge Bi, the superedges
of the superposition GC(A, B) can be partitioned into a combination of
single superedges and pairs of consecutive superedges, such that:

• A single superedge is assigned a normal 5-edge-coloring that is both
right-side σ-monochromatic and left-side σ-compatible, as shown in
Figure 5.

• A pair of consecutive superedges forms a larger chunk that is colored to
be right-side σ-monochromatic and left-side σ-compatible, as depicted
in Figures 6 and 7.

With additional refinements, this approach leads to the following result:

Theorem 3.3. [26] Let G be a snark, σ a normal 5-edge-coloring of G, C
a cycle of length g in G, and G̃ ∈ GC(A, B) a superposition of G. If there
exists at least one i ∈ {0, . . . , g − 1} such that pi(1) ̸= 1 or di ̸= 1, then G̃
admits a normal 5-edge-coloring σ̃ with at least 18 poor edges.

On the other hand, if di = 1 for every superedge Bi, the above approach
succeeds only when C is an even-length cycle. This limitation arises because
an odd number of superedges cannot be grouped into pairs for coloring as
shown in Figure 6, and a single superedge Bi with di = 1 cannot have
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a)

b)

c)

d)

e)

f)

Figure 7: For the normal 5-edge-coloring σ of G shown in Figure 4, this
figure illustrates normal 5-edge-colorings of Bi−1 and Bi that are compatible
with σ. The left column corresponds to Ai = A, and the right column
corresponds to Ai = A′. These configurations are shown for di = 2 and the
following permutations pi−1: a) (1, 2, 3), b) (1, 3, 2), c) (2, 1, 3), d) (2, 3, 1),
e) (3, 1, 2), and f) (3, 2, 1).
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a normal 5-edge-coloring that is both right-side σ-monochromatic and left-
side σ-compatible, as stated in Observation 3.2. Consequently, in such cases,
the following theorem provides the best result achievable by our approach:

Theorem 3.4. [24] Let G be a snark, σ a normal 5-edge-coloring of G,
C a cycle of length g in G, and G̃ ∈ GC(A, B) a superposition of G. If
pi = (1, 2, 3) and di = 1 for every i ∈ {0, . . . , g − 1}, then for even g, there
exists a normal 5-edge-coloring σ̃ of G̃ with at least 18 poor edges.

Next, we consider the case of a superposition along an odd-length cycle C
in a snark G, where pi = (1, 2, 3) and di = 1 for every superedge Bi. The
question arises whether it is generally impossible to extend a normal 5-edge-
coloring of G to such a superposition G̃, or if this limitation is specific to
our approach. To explore this, we analyze the Petersen graph G = P10.
The Petersen graph G, being vertex-transitive, has (up to isomorphism) a
single normal 5-edge-coloring, in which every edge is rich. It can be verified
computationally that the following holds:

Observation 3.5. [24] Let G be the Petersen graph and C a cycle of length
5 in G. Consider the superposition GC(A, B) of G such that Ai = A and
Bi = (P10)u,v with pi = (1, 2, 3) and di = 1 for all i ∈ {0, . . . , 4}. It is
not possible to extend the normal 5-edge-coloring of G to the superposition
GC(A, B) without altering the colors of edges in G outside C.

It is important to note that the above observation does not contradict the
Petersen Coloring Conjecture. The superposition GC(A, B) does admit a
normal 5-edge-coloring; however, this coloring cannot be obtained as an
extension of the normal 5-edge-coloring of G = P10. In other words, while
the superposition can be colored normally, doing so requires changing the
colors of edges in G outside the cycle C.

4 Superposition by any snark
In the approach discussed in the previous section, a problem arises when the
Petersen graph P10 is used as a superedge due to its diameter being two.
This implies that any two vertices in P10 are at a distance of at most 2.
Consequently, for at least one choice of the dock di, an edge of the snark G
belonging to the cycle C is replaced in the superposition by a path of length
two. It is evident that such a path cannot be assigned the same color as the
corresponding edge in C without violating the properness of the coloring.
To address this issue, we use larger snarks as superedges and restrict atten-
tion to pairs of vertices u, v in these snarks such that d(u, v) ≥ 3. In other
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Figure 8: A coloring σ of the edges incident to a vertex ui of the cycle C in
G. For this coloring σ, all colorings of Bi consistent with the color schemes
shown in Figure 9 are σ-compatible.

a) b) c)

Figure 9: The color scheme κj for: a) j = 1, b) j = 2, c) j = 3. The dashed
curve represents the Kempe chain P l.

words, we focus on superedges of the form Hu,v, where H is a snark with a
diameter of at least three, and u, v are vertices in H satisfying d(u, v) ≥ 3.
To generalize the approach from the previous section for any snark used
as a superedge, we extend the notion of (consistent) color schemes from
semiedges to connectors and superedges. Let G̃ ∈ GC(A, B) be a superpo-
sition of G, Bi a superedge of G̃, and σ̃i a 5-edge-coloring of Bi. The color
scheme of the left and right connector of Bi is defined as follows:

σ̃i[Sl] = (σ̃i[sl
1], σ̃i[sl

2], σ̃i[sl
3]) and σ̃i[Sr] = (σ̃i[sr

1], σ̃i[sr
2], σ̃i[sr

3]),

respectively. The color scheme of a superedge Bi is then defined as:

σ̃i[Bi] = (σ̃i[Sl], σ̃i[Sr]),

and is illustrated in Figure 8.
Let Bi be a superedge of GC(A, B), and let σ̃i and σ̃′

i be two normal 5-edge-
colorings of Bi. The colorings σ̃i and σ̃′

i are consistent on the left connector
Sl of Bi, denoted by σ̃i[Sl] ≈ σ̃′

i[Sl], if:

σ̃i[sl
j ] ≈ σ̃′

i[sl
j ] for all j = 1, 2, 3.

The consistency of σ̃i and σ̃′
i on the right connector Sr of Bi is defined

analogously. Finally, the colorings σ̃i and σ̃′
i are said to be consistent on Bi,
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denoted by σ̃i[Bi] ≈ σ̃′
i[Bi], if they are consistent on both the left and right

connectors. When this condition holds, we also say that the color schemes
σ̃i[Bi] and σ̃′

i[Bi] are consistent.

4.1 Right colorings
A normal 5-edge-coloring of Bi is called j-right if it is consistent with the
color scheme κj from Figure 9 and there exists a Kempe (2, 1)-chain P l

connecting the pair of left semiedges distinct from sl
j . A superedge Bi is

classified as follows:

• Dock-right: If it is j-right for j = di.

• Doubly-right: If it is j-right for at least two distinct values of j.

• Fully-right: If it is j-right for all j ∈ {1, 2, 3}.

A j-right coloring of Bi is σ-compatible with the coloring σ of the cycle C
in G, as shown in Figure 8, provided that the dock of Bi is di = j. For any
other coloring σ of G, a σ-compatible coloring of Bi can be derived from
a j-right coloring by applying a color permutation and/or swapping colors
along P l. Additionally, a j-right coloring of Bi is compatible with j-right
colorings of Bi−1 and Bi+1, provided all these colorings are σ-compatible.
Based on this, we establish the following theorem:

Theorem 4.1. [25] Let G be a snark with a normal 5-edge-coloring σ, C
a cycle of length g in G, and G̃ ∈ GC(A, B) a superposition of G. If every
superedge Bi is dock-right for i = 0, . . . , g − 1, then G̃ admits a normal
5-edge-coloring.

As an immediate consequence of Theorem 4.1, we obtain the following corol-
lary:

Corollary 4.2. [25] Let G be a snark with a normal 5-edge-coloring σ,
C a cycle of length g in G, and G̃ ∈ GC(A, B) a superposition of G. If
every superedge Bi is fully-right for i = 0, . . . , g −1, then G̃ admits a normal
5-edge-coloring.

The sufficient conditions outlined in Theorem 4.1 and Corollary 4.2 hold
for any snark H used as a superedge and for any pair of vertices u, v in
H such that d(u, v) ≥ 3. To demonstrate the broad applicability of these
conditions, in the next subsection we describe a large family of snarks H
for which these conditions are satisfied.
Before proceeding, we note that the extension of a coloring σ of a snark G
to a superposition G̃ can be performed independently along multiple vertex-
disjoint cycles. Recall that an even subgraph of a graph G is a subgraph
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where every vertex has an even degree. Based on this, we state the following
formal remark:

Remark 4.3. Theorem 4.1 remains valid when C is an even subgraph of
G.

4.2 Right colorings and hypohamiltonian snarks
We now demonstrate that the condition in Theorem 4.1 holds for hypo-
hamiltonian snarks. A graph H is said to be hypohamiltonian if H itself is
not hamiltonian, but the removal of any vertex v ∈ V (H) results in a graph
H − v that is hamiltonian. It is known that an infinite family of snarks,
the so-called Flawer snarks, are hypohamiltonian [6]. Furthermore, in [17]
hypohamiltonian snarks with cyclic connectivity 5 and 6 are constructed for
all but finitely many even orders. Thus, there exist infinitely many snarks
for which the following proposition holds.

Figure 10: A coloring σ of the edges incident to vertices ui and ui+1 of a
cycle C in G. All j, k-left colorings of Bi consistent with the color schemes
in Figure 11 are σ-compatible with this coloring σ of G.

Proposition 4.4. [25] Let H be a hypohamiltonian snark, and let x, y be
a pair of non-adjacent vertices in H. Then, Hx,y is j-right for at least one
j ∈ {1, 2, 3}.

We outline the proof of this result. For any hamiltonian cycle in H − y, the
cycle must be of odd length. Thus, its edges can be alternately colored by 1
and 2, except for the two edges incident to x, which are both colored by 2.
All other edges in H are assigned the color 3. Removing the vertices x and
y from H to obtain Hx,y, and preserving the colors of (semi)edges in Hx,y

as in H, results in a j-right coloring of Hx,y for some j ∈ {1, 2, 3}. Note,
however, that the specific value of j is not determined.
As a consequence, Theorem 4.1 and Proposition 4.4 together imply that
a superposition admits a normal 5-edge-coloring for any hypohamiltonian
snark H used as a superedge, and for any pair of vertices x, y ∈ H such that
d(x, y) ≥ 3. However, this result applies only to certain ways of identifying
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a) b) c)

d) e) f)

g) h) i)

Figure 11: The color scheme τj,k for: a) (j, k) = (1, 1), b) (j, k) = (1, 2),
c) (j, k) = (1, 3), d) (j, k) = (2, 1), e) (j, k) = (2, 2), f) (j, k) = (2, 3), g)
(j, k) = (3, 1), h) (j, k) = (3, 2), i) (j, k) = (3, 3).

semiedges. Moreover, it can be verified that for some choices of x, y already
in H being the smallest Flower snark, the superedge Hx,y is not fully-right.
Hence, a more refined sufficient condition is needed.

4.3 Left colorings
A normal 5-edge-coloring of Bi is referred to as a j, k-left coloring if it is
consistent with the color scheme τj,k shown in Figure 11 and there exists
a Kempe (1, 2)-chain P l connecting a pair of left semiedges distinct from
sl

j . A superedge Bi is called doubly-left if, for every j ∈ {1, 2, 3}, it admits
a j, k-left coloring for at least two distinct values of k. In other words, Bi

is doubly-left if it has a normal 5-edge-coloring consistent with at least two
color schemes from each row in Figure 11.
For a coloring σ of G as illustrated in Figure 10, a j, k-left coloring of Bi

is σ-compatible, provided that di = j. If A = A, such a coloring is also
compatible with a right coloring of Bi−1. If A = A′, compatibility with a
right coloring of Bi−1 can be achieved by swapping colors along P l. For
other colorings σ of G, a σ-compatible coloring of Bi with similar properties
can be obtained from a j, k-left coloring by applying a color permutation
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and/or appropriate color swaps along P l.
By leveraging the compatibility of left and right colorings, and the compati-
bility among right colorings, and partitioning the superedges into singletons
or consecutive pairs, we establish the following result:

Theorem 4.5. [25] Let G be a snark with a normal 5-edge-coloring σ, C
a cycle of length g in G, and G̃ ∈ GC(A, B) a superposition of G. If each
superedge Bi is both doubly-right and doubly-left for every i = 0, . . . , g − 1,
then G̃ admits a normal 5-edge-coloring.

As with Theorem 4.1, Theorem 4.5 provides a sufficient condition for ex-
tending a normal 5-edge-coloring of G to its superposition. This condition
applies to superedges of the form Hx,y, where H is any snark, and x, y are
any vertices in H satisfying d(x, y) ≥ 3. To illustrate the broad applicability
of this condition, we present an infinite family of snarks to which it applies,
namely, Flower snarks.
Furthermore, since the extension described in Theorem 4.5 can be applied
independently along multiple vertex-disjoint cycles, it follows that Theorem
4.5 also holds when C is an even subgraph of G.

4.4 Left colorings and Flower snarks

Figure 12: The Flower snark J5.

A Flower snark Jr, for odd r ≥ 5, is defined as a graph with the vertex set

V (Jr) =
r−1∪
i=0

{xi, yi, zi, wi},
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and the edge set

E(Jr) =
r−1∪
i=0

{xixi+1, xiyi, yizi, yiwi, ziwi+1, wizi+1},

where indices are taken modulo r. The Flower snark for r = 5 is depicted in
Figure 12. We consider a superedge Hx,y, where H = Jr, and x, y ∈ V (H)
is any pair of vertices in H such that d(x, y) ≥ 3.
To apply Theorem 4.5 to all superpositions using Flower snarks, we need
to establish that the superedge (Jr)x,y is both doubly-right and doubly-left
for every odd r ≥ 5 and every pair of vertices x, y in Jr with d(x, y) ≥ 3. A
reduction method introduced by Hagglund and Steffen [7] allows us to limit
our consideration to the Flower snark J5 and specific pairs of vertices in J7,
as detailed in the following proposition, which is verified computationally
(in silico).

Proposition 4.6. [25] Let J5 be the Flower snark, and let x, y be a pair
of vertices in J5 such that d(x, y) ≥ 3. Then the superedge (J5)x,y is both
doubly-right and doubly-left. The same holds for a superedge (J7)x,y, where
(x, y) ∈ {(x0, x3), (z0, z3), (z3, z0)}.

Building on the above proposition and using the reduction method for larger
Flower snarks, the application of Theorem 4.5 leads to the following result:

Theorem 4.7. [25] Let G be a snark with a normal 5-edge-coloring σ,
C an even subgraph of G, and G̃ ∈ GC(A, B) a superposition of G. If
Bi ∈ {(Jr)x,y : x, y ∈ V (Jr) and d(x, y) ≥ 3} for every ei ∈ E(C), then G̃
admits a normal 5-edge-coloring.

Since the Petersen Coloring Conjecture implies the Ford-Fulkerson Conjec-
ture, Theorem 4.7 implies the results presented in [14].

5 Concluding remarks
The findings derived from our research on this topic have inspired us to
propose a conjecture suggesting the validity of additional claims. To articu-
late this conjecture, we first introduce some essential definitions. A normal
coloring of a cubic graph G is called a strong coloring if every edge in the
graph is rich. The minimum number of colors needed to achieve a strong
coloring of a cubic graph G is referred to as the strong chromatic index and
is denoted by χ′

s(G). Let NC(G) represent the set of all normal 5-colorings
of G. The Petersen Coloring Conjecture asserts that NC(G) ̸= ∅ for any
bridgeless cubic graph G.
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Assuming the Petersen Coloring Conjecture is true, meaning that NC(G)
is non-empty for every bridgeless cubic graph G, we define poor(G) as the
highest number of poor edges found across all colorings in NC(G). In exam-
ining poor(G), it is particularly insightful to first analyze the 3-cycles and
4-cycles present in a snark G, provided such cycles exist within G.

Remark 5.1. [24] Let G be a bridgeless cubic graph and σ a normal 5-
coloring of G. If G contains a 3-cycle C, then every edge in C is poor in σ.
Similarly, if G contains a 4-cycle C, then either 2 or 4 edges of C must be
poor in σ.
It follows that any graph admitting a normal 5-coloring devoid of poor edges
must have a girth of at least 5. Denote by P ∆

10 the graph obtained from P10
by truncating one of its vertices. A normal 5-edge-coloring of P ∆

10 has at
least 3 poor edges, and a straightforward verification confirms that it has
exactly 3 poor edges. This observation motivates the following conjecture.
Conjecture 5.2. [24] Let G be a bridgeless cubic graph. If G ̸= P10, then
poor(G) > 0. Moreover, if G ̸= P10, P ∆

10, then poor(G) ≥ 6.

Regarding the two sufficient conditions for superpositions by any snark H
and any pair of vertices x, y in H with d(x, y) ≥ 3, the sufficient condi-
tion in Theorem 4.1 is weaker than that in Theorem 4.5. Nonetheless, it
is applicable to superpositions by infinitely many distinct snarks, specifi-
cally to all hypohamiltonian snarks used as superedges, although not to all
possible ways of semiedge identification. For instance, since Flower snarks
are hypohamiltonian, Theorem 4.1 implies that many snarks superposed
by Flower snarks admit a normal 5-edge-coloring. In contrast, the condi-
tion of Theorem 4.5 is more stringent. When applied to snarks superposed
by Flower snarks, it guarantees that all such superpositions have a normal
5-edge-coloring.
For Flower snark superedges, the sufficient condition in Theorem 4.5 can
be reformulated to involve the corresponding 2-factors, whose existence is
then verified computationally. A promising avenue for future research is
to establish that all snarks, or certain broad families of snarks, possess the
required 2-factorizations.
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