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Two reminders on Ptolemy and Ramanujan and
some problems

Darko Veljan

Abstract
We present, discuss, and offer alternative proofs for a couple of beau-
tiful results spanning almost two millennia, but unified by their con-
nections to Indian mathematics. Several open problems are suggested
for future research.

1 Introduction
The motivation for this note was the nice Croatian - Indian mathematical
evening held on Dec. 20, 2024, at the Department of Mathematics, Univer-
sity of Zagreb, where three 20-minute lectures were given by academician
Andrej Dujella, prof. dr. sc. Zvonimir Šikić and prof. dr. sc. Mirko Primc,
relating their research works connected to some Indian mathematicians. The
main organizer of the event was prof. dr. sc. Darko Žubrinić. After the
lectures and some Indian food snacks and Croatian wines and beverages, I
put on the blackboard some of Ramanujan’s problems. The lecturers and
other participants didn’t know at the moment how to prove them (neither
did I). The first topic of this note (on Ptolemy) is also deeply interconnected
with Indian mathematics. So, these are the main motivations of this note.
In my translation [16] of the beautiful book [11], in two topics I added some
additional new stuff that does not appear in the original (as well as some
others). The first is Ptolemy’s formula in the topic Ptolemy’s Almagest,
year about 150 and Fuhrmann’s formula, and in the year 1500 topic The
series for computing π, I added a wonderful identity of Ramanujan which
I’ll explain in the sequel. This note is not only my own research, but I
think it’s worth reminding us of these two gems of mathematics. We end
the paper with some problems (not in the original) from [16].

(Darko Veljan) University of Zagreb, Faculty Science, Zagreb, Croatia,
darko.veljan@gmail.com
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2 Ptolemy’s theorem
The famous mathematician and astronomer Ptolemy, or Claudius Ptolo-
maeus (c. 90 - c. 168) from Alexandria, published about the year 150 his
comprehensive work Almagestus, or simply Almagest in 13 books, where he
described almost all knowledge of astronomy and mathematics known to his
time. The work is also known in Latin as Syntaxis Mathematica. He created
a geocentric model of the Universe that was accepted as true for more than
1300 years until Copernicus’ Revolution of the Celestial Spheres in 1543.
Ptolemy had trigonometric tables of certain quantities like the function sine
with measures of every 15’.
From the tables, he deduced the formula for the sine of the sum of two
angles. In fact, this was the root of the theorem, many centuries later
named after Ptolemy.
A (convex) quadrilateral (or any convex polygon) is called cyclic if it is
inscribed in a circle (i.e. all of its vertices lie on a single circle). Now we
can formulate the basic theorem.

Theorem 2.1 (Ptolemy’s theorem (about AD 150)). A quadrilateral
ABCD (vertices in this order) is cyclic if and only if the product of the
lengths of its diagonals is equal to the sum of the products of the lengths of
the pairs of opposite sides.

In symbols, if |XY | is the length of the segment between points X and Y ,
and if we denote |AB| = a, |BC| = b, |CD| = c, |DA| = d, |AC| = e,
|BD| = f , then we have:

ef = ac + bd. (2.1)
It seems that the first rigorous proof of this theorem was given by the
Arab mathematician (and translator) Abul Wafa (or Wefa) about AD 980.
However, many used the Ptolemy formula much earlier. For example, the
Indian mathematician Brahmagupta (598-660) used Ptolemy’s theorem to
compute the area and the radius of the cyclic quadrilateral in terms of side
lengths around year 650. In fact, Brahmagupta first proved (with the same
notation as above) that

f

e
= ad + bc

ab + cd
. (2.2)

Equations (2.1) and (2.2) enable us to express the lengths of diagonals in
terms of side lengths of cyclic quadrilaterals. Then, using the well-known
Heron’s formula from about AD 60, which gives the triangle area in terms
of its side lengths, Brahmagupta computed the area S and the radius R of
the cyclic quadrilateral in terms of its side lengths a, b, c, d as

16S2 = (a + b + c − d)(a + b − c + d)(a − b + c + d)(−a + b + c + d), (2.3)
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and

R2(a + b + c − d)(a + b − c + d)(a − b + c + d)(−a + b + c + d) =
= (ab + cd)(ac + bd)(ad + bc).

(2.4)

Note that Brahmaguptas’s formulae reduce to triangle formulae for say,
d = 0. More precisely, formula (2.3) reduces to Heron’s formula and formula
(2.4) to the triangle’s circumradius. Apparently, some of these formulae for
triangles were known even to Archimedes about 220 B.C.

Proof of Ptolemy’s theorem. There are many known proofs of Theorem 2.1,
as presented e.g. in [1]. Perhaps the shortest and most elegant proof is
by inversion. Choose a big circle K with the center, say, D and radius r,
so that the circumcircle k = ABCD is inside K. Consider the inversion
I = I(D, r). Then k is mapped into a line k′. Let A′ = I(A), B′ = I(B),
C ′ = I(C). Then |A′B′| + |B′C ′| = |A′C ′| on the line k′. But

|A′B′| = |AB|r2

|DA||DB|
,

and similarly for |B′C ′| and |A′C ′|. So, equality (2.1) follows.
Conversely, if one of the vertices does not lie on the circle k, say, B, then
|A′B′| + |B′C ′| > |A′C ′|, by triangle inequality, hence ac + bd > ef .
The formula (2.2) can also be easily proved via inversion. For a more general
fact see Mathologer, Ptolemy’s theorem.

Ptolemy’s theorem is equivalent to the following facts: the addition formulas
for sine and cosine, Pythagoras’ theorem, the sine law for triangles, the
cosine law for triangles, and many more. Since Pythagoras’ theorem is
equivalent to Euclid’s fifth postulate, we may say that Ptolemy’s theorem
is in the essence of Euclidean geometry.
Today there are many generalizations, extensions, corollaries, and equivalent
statements of Ptolemy’s theorem beyond those already mentioned. Even
some Croatian mathematicians contributed to the topic, e.g. [4, 8, 9]. One
of the best-known generalizations and most quoted extensions of Ptolemy’s
is Fuhrmann’s hexagon theorem which I also quoted in [16] in the topic
Ptolemy’s Almagest (150). This theorem (see [2]) is named after the German
mathematician Wilhelm Fuhrmann (1833-1904).

Theorem 2.2 (Fuhrmann’s theorem (1890)). Let the opposite side lengths
of a convex cyclic hexagon be a, a′, b, b′ and c, c′, and let e, f, g be the polygon
(big) diagonals, such that a, a′ and e have no common polygon vertex, and
likewise for b, b′ and f and c, c′ and g. Then

efg = aa′e + bb′f + cc′g + abc + a′b′c′. (2.5)

129



D. Veljan

Idea of the proof. Let ABCDEF be the cyclic hexagon with side lengths
AB = a, BC = b, CD = c, DE = a′, EF = b′, FA = c′ and CF = e,
DA = f and BE = g. Here AB = |AB|, etc. We apply Ptolemy’s theorem
to each of the four convex cyclic quadrilaterals ABDE, BCDF , ADEF ,
and ABEF . After some simple algebraic manipulations with Ptolemy’s
relations, we can obtain the formula (2.5). We omit some tedious computa-
tional details. See also some Internet sites such as [2].

Ptolemy’s theorem in the hyperbolic plane, say with curvature −1, is given
by the following. The formula is the same as (2.1), but instead of x now we
have s(x) = sinh

(
x
2
)
.

Theorem 2.3 (Ptolemy’s theorem in hyperbolic geometry). Let ABCD be
a convex hyperbolic quadrilateral inscribed in a hyperbolic circle. Then

s (|AC|) s (|BD|) = s (|AB|) s (|CD|) + s (|AD|) s (|BC|) . (2.6)

The converse is also true. A convex hyperbolic quadrilateral ABCD has a
hyperbolic circumcircle if three of the points lie on a hyperbolic circle and
satisfy equation (2.6).

Proofs are similar to the original proof of Ptolemy’s theorem and can be
found in the literature cited before. Of course, the spherical version of
Ptolemy holds as well with the same formula (on the unit sphere) with
s(x) = sin

(
x
2
)
.

In [14], we managed to prove some interesting geometric facts on cyclic
pentagons and, among other things, we proved the Robbins formulae which
gives a polynomial equation for the area and radius of a cyclic pentagon
in terms of its side lengths, something like Brahmagupta’s formulas (2.3)
for cyclic quadrilateral, but much more involved. A nice survey on the
topic of Robbin’s conjectures is given in [10]. Recently, D. Svrtan in [13]
used Hopf-Wiener factorization of certain Laurent polynomial invariant of
cyclic polygons and by tricky computer search obtained huge polynomials
for cyclic n-gons areas and circumradius for n = 4, 5, 6, 7 and 8.
As said earlier, there are many generalizations of Ptolemy’s theorem. The
best seems to me is the following from [3].

Theorem 2.4 (M. Bencze, 2011). Let A1A2, . . . An be a convex cyclic Eu-
clidean polygon with vertices in given order. Then the following holds

|A2An|
|A1A2||A1An|

= |A2A3|
|A1A2||A1A3|

+ |A3A4|
|A1A3||A1A4|

+ · · · + |An−1An|
|A1An−1||A1An|

.

(2.7)
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Proof is again by inversion. Note that for n = 4 we get Ptolemy’s relation
(2.1), for n = 5 we have this in [14] in some form, and for n = 6 we get
Fuhrmann’s formula (2.5).
A generalization of Ptolemy’s theorem in n-dimensional Euclidean space
was given in [5]. Furthermore, a very recent analog of Fuhrmann’s theorem
in the Lobachevsky plane was given in [7]. Here we stop on Ptolemy.

3 Some Ramanujan identities and conjectures
Now we shall consider a completely different topic, but also deeply connected
to Indian mathematics. It is about the brilliant Indian mathematician Srini-
vasa Ramanujan (1887-1920), see his Collected papers and problems with
some solutions [6] having 355 pages (which my colleague M. Primc kindly
lent me after our Croatian-Indian math evening).
In [16], I put the following Ramanujan’s identity in the article Series for
Computing π, the year 1500:

A + B =
√

πe

2
. (3.1)

Here A is the infinite series

A = 1 + 1
1 · 3

+ 1
1 · 3 · 5

+ · · · =
∑
n≥1

1
(2n − 1)!!

,

and B is the infinite continuous fraction

B = 1
1 + 1

1+ 2
1+ 3

1+···

.

The exact values of both A and B are not known, but still, their sum is
the square root of πe

2 . I have seen it somewhere and couldn’t resist but
put that gem in my translation [16]. Now I found it in [6], p. 341, as
Ramanujan’s question 541 in the Indian Journal of Mathematics from 1914.
I tried to prove it but with no success. There is no solution in [6]. Then
the organizer of that event, my colleague D. Žubrinić, sent me the link
of Mathologer https://www.youtube.com/watch?v=6iTdNmDHfV0 with a
very nice explanation and proof of formula (3.1).
So, following this link, I’ll try to present proof of 3.1. Once more this proof
was shown on Mathologer Masterclass on the above link under the title
Ramanujan’s easiest hard infinite monster on June 24, 2023.
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Proof of Ramanujan identity (3.1). First, recall the Gauss normal distribu-
tion integral formula. The area under the Gauss bell is

√
π =

∫ ∞

−∞
e−t2

dt (3.2)

See e.g. Wikipedia on Gaussian integral. On the other hand, recall Wallis’
formula from 1665:

π

2
= 2 · 2 · 4 · 4 · 6 · 6 · · ·

1 · 3 · 3 · 5 · 5 · 7 · 7 · · ·
. (3.3)

A short proof of Wallis’ formula is as follows. It is well known that

sin x = x
∏
k≥1

(
1 −

(
x

kπ

)2
)

.

Substituting x with π
2 yields formula (3.3). This is a special case of Euler’s

product formula
sin(πz)

πz
=
∏
n≥1

(
1 − z2

n2

)
,

valid for any complex number z. It is also known as Euler’s sinc function for-
mula (see e.g., https://proofwiki.org/wiki/Euler_Formula_for_Sine_
Function/Complex_Numbers ).
Now consider the following series to get A in (3.1). Let

y(x) = x

1!
+ x2

2!
+ x3

3!
+ · · · =

∑
n≥1

xn

n!
. (3.4)

By taking derivative of (3.4), we have

y′(x) = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · = 1 +

∑
n≥1

xn

n!
. (3.5)

Hence, y(x) = Cex − 1, but from y(0) = 0, we get C = 1, so y(x) = ex − 1.
So, for x = 1, we have

e = 1 + 1
1!

+ 1
2!

+ 1
3!

+ · · · ,

i.e. the well-known Euler’s number e, and the well-known series expansion
of the exponential function

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · .
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Now consider the function

y(x) = x

1
+ x3

1 · 3
+ x5

1 · 3 · 5
+ x7

1 · 3 · 5 · 7
+ · · · =

∑
n≥1

x2n−1

(2n − 1)!!
. (3.6)

By taking the derivative of (3.6), we get the differential equation

y′(x) = 1 + xy(x), (3.7)

with y(0) = 0. The solution of this linear ordinary differential equation of
the first order (3.7), as known from the theory of ODE, is given by

y(x) = e
x2
2

∫ x

0
e− t2

2 dt. (3.8)

So, the right-hand side of (3.8) is the right-hand side of (3.6). So far we
know that √

πe

2
= A +

√
e

∫ ∞

1
e− t2

2 dt. (3.9)

What is left to prove is that the second summand on the right-hand side
of (3.9) is equal to the continuous fraction B from (3.1). Now consider the
function

y(x) = e
x2
2

√
π

2
− e

x2
2

∫ x

0
e− t2

2 dt. (3.10)

By taking the derivative of (3.10), it is easy to check that we get the differ-
ential equation (a bit different from (3.7)):

y′(x) = xy(x) − 1, (3.11)

with y(0) =
√

π
2 . Keep taking the derivatives of (3.11) repeatedly, we obtain

y′ = xy − 1
y′′ = xy′ + y

y′′′ = xy′′ + 2y

y′′′′ = xy′′′ + 3y′′

...

Hence y′

y = x − 1
y , y′′

y′ = x + y
y′ , y′′′

y′′ = x + 2 y′

y′′ , y′′′′

y′′′ = x + 3y′′

y′′′ , and so on.
Then by substituting and by little calculation we finally get

y(x) = 1
x + 1

x+ 2
x+ 3

x+ 4
...

. (3.12)
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Setting x = 0 in (3.12) we get

y(x) = 1
1
2
3
4
...

,

and by taking little care of this infinite fraction we obtain that it is equal
to

2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · · ·

.

By Wallis’ formula, this is equal to π
2 . Finally, we therefore proved (with

some care on convergence) that for all x > 0, we have

e
x2
2

√
π

2
=
(

x1

1
+ x3

1 · 3
+ x5

1 · 3 · 5
+ · · ·

)
+ 1

x + 1
x+ 2

x+ 3
x+ 4

...

. (3.13)

Thus, (3.13) holds also for x = 1. Thus, the identity (3.1) is proved.

In the Collected Papers [6] of S. Ramanujan there are many interesting the-
orems, identities, approximations, formulas, and conjectures. For instance,
Ramanujan proved that for a sufficiently big natural number n, there are,
as a rule, log log n prime divisors of n. The next example is his approxima-
tion π ≈ 63(17+15

√
5)

25(7+15
√

5) which is exactly up to 9 decimals (of course, without
computers!). Even today, certain aspects of the so-called „combinatorial
Rogers-Ramanujan identities“are the topic of current research, e.g. see [12]
by Croatian mathematician Mirko Primc, an expert in applications of rep-
resentation theory and Lie algebra theory in combinatorics.
Here is one of Ramanujan’s problems posed in 1913 (from [6]):
Compute

a) √
1 + 2

√
1 + 3

√
1 + · · ·, (3.14)

b) √
6 + 2

√
7 + 3

√
8 + · · ·. (3.15)
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Solution by S. Ramanujan.
a) It holds n(n + 2) = n

√
1 + (n + 1)(n + 3). Let f(n) = n(n + 2). Then

f(n) = n
√

1 + f(n + 1) = n

√
1 + (n + 1)

√
1 + f(n + 2) = · · · ,

hence
n(n + 2) = n

√
1 + (n + 1)

√
1 + (n + 2)

√
1 + · · ·.

For n = 1, the result of a) is equal to 3.
b) Similarly, let f(n) = n(n+3). Since n(n+3) = n

√
n + 5 + (n + 1)(n + 4),

we have

f(n) = n
√

n + 5 + f(n + 1)

= n

√
n + 5 + (n + 1)

√
n + 6 + f(n + 2) = · · · ,

and for n = 1, we get that the result of b) is equal to 4.
Ramanujan also conjectured many identities and a lot of claims which
he or other people resolved later. One easy is that the number
0.2357111317192329 . . . (concatenation of all primes after the decimal
comma) is not a rational number. But his conjecture that the num-
ber π + e is not rational is still not resolved. He knew Leibniz’s for-
mula π

4 = 1 − 1
3 + 1

5 − 1
7 + · · · , which follows from the series expan-

sion arctan x = x − x3

3 + x5

5 − x7

7 + · · · for x = 1, and Euler’s number
e = 1+ 1

1! + 1
2! + 1

3! + · · · and was not sure about their sum, although both π
and e are transcendental. Also, an open problem is that 2e is not rational.
It was only in 1934 that was proved that 2 to the power of

√
2 and log 2

log 3
are transcendental. It is quite possible that Ramanujan considered such
problems much earlier.
Apparently, Leibniz’s formula for π

4 was known to the Indian mathematician
Nilakanthi Somayai (1444-1530) and also to Scott James Gregory (1638-
1675). Leibnitz proved it in 1673 geometrically. Even Newton praised that
formula and said that it showed that Leibniz was a genius, although they had
a long dispute about whose contribution to calculus was most influential.
In any case, Srinivasa Ramanujan definitely was a genius.
In the end, we provide some questions, sayings, and open problems I put
in [16].
Besides Millenium problems which I included in my translation (not in the
original), I also added some solved and unsolved problems in the translation
[16] of [11].
Here are some.
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• Four girls are bathing in the (say) Adriatic sea. Each two are at a
distance from each other at about 25 meters. Three of the girls have
red bikinis, what has the fourth girl on herself?

• (Paul Erdös,1936) If a set A of natural numbers has the property
that the sum of the reciprocals diverges, then A has an arithmetical
sequence of arbitrary length (true for A primes, by T. Tao and B.
Green, 2012)

• David Hilbert (1862 -1943) once said that if he awakens (in some sense)
1000 years from now, his first question would be: Is the Riemann
hypothesis solved?

• Euler’s perfect brick (or box ) problem (about 1772): Is there a perfect
brick? A perfect brick is a quadrum (brick) with all lengths of edges,
diagonals (plane and space) are whole numbers.

• Graham’s problem (1996): Is the sequence (an), unbounded if a0 = 2
and an+1 = an − 1

an
?

• Geometry problem (from 1930th): Which polyhedron on n vertices on
the unit sphere has the maximal volume? (The five Plato’s bodies are
solutions, but in general?)

• Atiyah’s conjecture (1998) on star configurations: Consider n > 2
points („stars“) in space, not all on a line. From any point („star“)
consider n−1 directions to other „stars“(considered as complex num-
bers on the unit sphere). Attach to any point („star“) the polynomial
whose directions are the roots. Then is the set of these n polynomials
linearly independent (over the complex numbers)?

• (D. Veljan, 2023): The probability that a randomly and uniformly
chosen point from the circumball of a tetrahedron is out of the in-
scribed ball is greater than or equal to 1 −

√
d3

(3e1)3 , (see [15]) where
e1 = aa′ +bb′ +cc′, d3 = (aa′ +bb′ −cc′)(aa′ −bb′ +cc′)(−aa′ +bb′ +cc′),
and a and a′ are the opposite side lengths of a tetrahedron and simi-
larly for b, b′ and c, c′. (We can think of vertices of the tetrahedron as
stars and the chosen point as an exoplanet.) What are the hyperbolic
3D and 4D versions of this fact with respect of the complexity of our
Universe?
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