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Abstract
Graph theory is an extremely diverse field with wide applications to-
day. Graphs have proven to be an excellent tool for modeling systems,
emphasizing connections and relationships between objects. In graph
theory, matching is a fundamental concept used to describe a set of
edges without common vertices. Understanding them is essential for
solving problems involving efficient routing and resource allocation.
In this work, we enumerate maximal matchings and determine the
saturation and matching number in book graphs, which are suitable
for representing certain configurations of computer networks.

Keywords: cycle related graphs, book graph, maximal matching, satura-
tion number, matching number.
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1 Introduction
Graph theory is an extremely diverse field with wide applications today.
Graphs have proven to be an excellent tool for modeling systems empha-
sizing connections and relationships between objects. If we pay attention,
we will notice that the problems studied by graph theory are everywhere
around us. In this paper, we will show the properties of book graphs that
are inspired by a type of network topology.

A graph G(V,E) is a pair of two sets, V and E, V = V (G) being a finite
nonempty set and E = E(G) is a binary relation defined on V . A graph
can be visualized by representing the elements of V by points (vertices) and
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joining pairs of vertices (i, j) by an edge (bond) if and only if (i, j) ∈ E(G).
The number of vertices in G equals the cardinality n = |V (G)| of this set.
The degree of a node in a non-directed graph is defined as the number of
links a node has with other nodes.
We assume that the reader is familiar with basic graph-theoretic concepts
such as degree, neighborhood, etc., and with basic classes of graphs such
as paths, cycles, and complete graphs. Here we denote by Pn a path on n
edges (n + 1 vertices) and by Cn a cycle on n vertices. All graphs in this
paper are finite, simple, and undirected. Terms not defined here are used
in the sense of Harary [4].

In graph theory, matching is a fundamental concept used to describe a set
of edges without common vertices. Matchings are used in various applica-
tions such as network design (efficient routing and resource allocation), job
assignments (assigning jobs to machines or workers), scheduling (optimal
scheduling of tasks), chemistry, graph coloring, neural networks in artifi-
cial intelligence, and more. The cardinality of M is called the size of the
matching. As the matchings of small sizes are not interesting, we will be
mostly interested in matchings that are as large as possible. A matching
M is maximum if there is no matching in G with more edges than M . The
cardinality of any maximum matching in G is called the matching number
of G and denoted by ν(G). Since each vertex can be incident to at most
one edge of a matching, it follows that the matching number of a graph on
n vertices cannot exceed

⌊
n

2

⌋
.

The matching M is perfect if each vertex of G is incident with an edge of
M . Perfect matchings (also known in chemistry as Kekulé structures) are
also maximum matchings [5].
There is another way to quantify the idea of ”large” matching. A match-
ing M in G is maximal if no other matching in G contains it as a proper
subset. Obviously, every maximum matching is also maximal, but the op-
posite is generally not true. Maximal matchings are much less researched
with respect to both their structural and enumerative properties. Maximal
matchings can serve as models of several technical problems such as the
block-allocation of a sequential resource. The cardinality of any smallest
maximal matching in G is the saturation number of G. The saturation
number of a graph G we denote by s(G). It is easy to see that the satu-
ration number of a graph G is at least one-half of the matching number of
G, i.e., s(G) ≥ ν(G)/2. Hence, the saturation number provides a piece of
information on the worst possible case.

Network topology refers to the arrangement and interconnection of vari-
ous components within a (computer) network, including nodes (computers,
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Figure 1: Multiple Ring Networks with Shared Link

switches, routers) and links (wired or wireless connections). It defines how
these components are connected and interact with each other. Physical
topology refers to the placement of the network’s various components, in-
cluding the device locations and cable installation, while logical topology
shows how data flows within the network, regardless of its physical de-
sign [3].
The structure of a network topology determines how data is transmitted, af-
fecting the network’s performance, reliability, and scalability. An efficiently
designed topology can reduce cable costs, enhance data transfer speeds,
and improve network reliability. On the other hand, a poorly thought-out
topology can lead to congested data paths and increased risk of network
failures. For organizations, choosing the right topology is a key part of net-
work planning, as it affects both the operational efficiency and the ease of
future expansion. The landscape of network topology is diverse, offering
various configurations, each with its unique characteristics and suitability
for different network scenarios.

The primary types of network topology include: Point-to-Point (represented
by path graph), Bus Topology (caterpillar), Star (star graph), Ring (cy-
cle graph), Tree (tree graph), Mesh (with each node having a connection
to several other nodes), Hybrid (combines two or more different types of
topologies).
In this paper, we are concerned with graphs representing one possible net-
work topology, the Multiple Ring Network with Shared Link. The shape
of that topology can be represented by a graph we call a book graph. We
represent the components, nodes (computers, switches, routers) by vertices
and links (wired or wireless connections) by edges of certain graphs. Book
graphs consist of a certain number of cycles, not necessarily of the same
length, which all share one common edge. The cycle lengths are at least
three. See examples in Fig.2.
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Figure 2: A book graph a) B(2, 1) with 2 sheets b) B(3, 2) with 3 sheets

2 Maximal matchings in book graphs

In this section, we state and prove our main results about the number of
maximal matchings in book graphs. We refer the reader to [4] for all graph-
theoretical terms not defined here.

A book graph B = B(n, k) is a graph with nk + 2 vertices, consisting of
n cycles Ck+2, that all share exactly one common edge. Let us denote
the vertices of the common edge with u and w. The other vertices we
denote with v11, ..., v1k, v21, ..., v2k, ...vn1, ..., vnk, where the first label, say m,
indicates the cycle, and the second label indicates the position of a vertex
in the m-th cycle. In all cycles, the second vertex labels are increasing when
proceeding along the cycle from u to w. See Figure 3. In order to avoid
problems with too few, or with too short cycles, we restrict our attention to
n ≥ 2 and k ≥ 3. We denote the number of maximal matchings in B(n, k)
by Ψ(n, k).
First, we settle the two shortest cases, k = 1 and k = 2.

Lemma 2.1. Let n ≥ 2. Then the number of maximal matchings in B(n, 1)
is given by

Ψ (n, 1) = n(n− 1) + 1, (2.1)
and the number of maximal matchings in B(n, 2) is given as

Ψ (n, 2) = n2 + 1. (2.2)

Proof. We start with an observation, valid also for k ≥ 3, that any maximal
matching must cover at least one of the vertices u and w. The number of
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Figure 3: A book graph B(n, k)

maximal matchings in B(n, 1) in which both u and w are covered by the
same edge, hence uw, is exactly one. If u and w are covered by different
edges, the edge covering u can be chosen in n ways, leaving n−1 possibilities
to choose the edge covering w, since those edges cannot belong to the same
cycle. Since it is not possible to have either one of u and w uncovered by a
maximal matching, we have exhausted all possibilities and the total number
of maximal matchings in B(n, 1) is equal to n(n− 1) + 1, as claimed.
The number of maximal matchings in B(n, 2) covering both u and w by
the same edge is again 1. If those vertices are covered by different edges,
there are n · n = n2 such possibilities. Again, it is not possible to have
just one of them covered by a maximal matching, a consequence of random
matchability of cycles C4 making the sheets of the considered books. Hence,
Ψ (n, 2) = n2 + 1, as claimed in the statement.

Both sequences Ψ(n, 1) and Ψ(n, 2) appear in the On-Line Encyclopedia of
Integer Sequences [1], Ψ(n, 1) as A002522, and Ψ(n, 2) as A002061. Both
have a number of other combinatorial interpretations, but maximal match-
ings are not among them. It would be an interesting exercise to construct
explicit bijections between some of those interpretations and our maximal
matchings.

Before we consider the general case, we notice for that any maximal match-
ing in B(n, k) covering both u and w, the remaining graph decomposes into
a disjoint union of paths of the same, or almost same, length. Hence, we
quote a result on the number of maximal matchings in paths [2].
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Proposition 2.2 ( [2]). Let ψk denote the number of maximal matchings
in Pk. The sequence ψk satisfies the linear recurrence

ψk = ψk−2 + ψk−3,

with the initial conditions ψ0 = ψ1 = ψ2 = 1.

The enumerating sequence of the number of maximal matchings in Pk is
the (shifted) Padovan sequence, sequence A000931 from [1]. We invite the
reader to refer to OEIS for other combinatorial representation of this se-
quence.
The above lemma will be useful also for the case when only one of u and w
is covered by a maximal matching. In that case, all neighbors of the other
one must be covered, and the graph again decomposes into several disjoint
paths, their length again quite similar.

Proposition 2.3. The sequence Ψ(n, k) is given by

Ψ(n, k) = ψn
k + nψk−2 ψ

n−1
k + n(n− 1)ψ2

k−1 ψ
n−2
k + 2n(n− 1)ψk−3 ψ

n−1
k−2 ,

for n ≥ 2, k ≥ 3, where ψk denotes the number of maximal matchings in Pk.

Proof. As mentioned before, any maximal matching in B(n, k) must cover
at least one of the vertices u and w. We first look at the case when it covers
both of these vertices. The number of maximal matchings covering them
with the edge uw is the number of maximal matchings in B(n, k)\{u,w}.
This graph is a disjoint union of n paths Pk, each of them has ψk maximal
matchings. Therefore, the number of maximal matchings covering vertices
u and w by the same edge is equal to

ψn
k . (2.3)

Let us now consider the case when u and w are covered by different edges in
a maximal matching. If both of these edges are in the same cycle, say uvl1
and wvlk, what remains when we remove them, is a disjoint union of n− 1
copies of Pk and one copy of Pk−2. The number of maximal matchings in
that case is ψn−1

k ψk−2. Since there are n possibilities for choosing the cycle
in which the edges covering u and w are, the total number of such maximal
matchings is

nψk−2 ψ
n−1
k . (2.4)

In the same way, we can conclude that the number of maximal matchings
in which u and w are covered by edges from different cycles is equal to

n(n− 1)ψ2
k−1 ψ

n−2
k . (2.5)
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The last possible case is that the maximal matching covers only one of the
vertices u and w, say u. Let it be covered by the edge uvl. Then all the
neighboring vertices of w must be covered by edges v1kv1,k−1, ..., vnkvn,k−1.
So, we have one copy of Pk−3 and n− 1 copies of Pk−2, with n such possible
situations, so we have nψk−3ψ

n−1
k−2 maximal matchings that cover only u. By

symmetry, there are exactly as many maximal matchings that cover only w,
so the number of maximal matchings that cover only one of the vertices u
and w is equal to

2nψk−3 ψ
n−1
k−2 . (2.6)

Now we get the total number of maximal matchings in B(n, k) for n ≥
2, k ≥ 3 by summing all possible cases.

For the same reason, as in the proof for maximal matchings, we state the
result for saturation number, where n denotes the number of vertices [2],

s(Pn) =
⌊n+ 1

3

⌋
(2.7)

and matching number for paths

ν(G) =
⌊n

2

⌋
. (2.8)

Proposition 2.4. Saturation number for graph B(n, k) is equal to

s(B(n, k)) =

 (n− 1)
⌊

k−1
3

⌋
+

⌊
k−2

3

⌋
, if k ≥ 3

2
⌊

k
3

⌋
+ (n− 2)

⌊
k+1

3

⌋
, if k = 2.

Proof. Let’s consider all possible cases. Any maximal matching in B(n, k)
must cover at least one of the vertices u and w.
We first look at the case when it covers both of these vertices. This graph
is a disjoint union of n paths Pk, and each of them has saturation number
s(Pk) =

⌊
k+1

3

⌋
. Therefore, saturation number in this case is equal to

n

⌊
k + 1

3

⌋
+ 1 (2.9)
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In the case when u and w are covered by different edges we have two options.
If both of these edges are in the same cycle, for the disjoint union of n− 1
copies of Pk and one copy of Pk−2 saturation number is equal

(n− 1)
⌊
k + 1

3

⌋
+

⌊
k − 1

3

⌋
(2.10)

In the same way, we can conclude that the saturation number in case when
u and w are covered by edges from different cycles is equal to

2
⌊
k

3

⌋
+ (n− 2)

⌊
k + 1

3

⌋
(2.11)

If the maximal matching covers only one of the vertices u and w, then we
have one copy of Pk−3 and n − 1 copies of Pk−2, so the saturation number
is equal to

(n− 1)
⌊
k − 1

3

⌋
+

⌊
k − 2

3

⌋
, (2.12)

which is also the smallest possible value for saturation number. For k = 2
formulas (11) and (12) give the same value.

By analogical consideration it can be easily shown that the formula for
matching number in B(n, k) is given by the following proposition.

Proposition 2.5.
ν(B(n, k)) = n

⌊
k

2

⌋
+ 1.

Proof. In the first case when maximal matching covers both of joint vertices,
and graph is a disjoint union of n paths Pk, is also maximum matching in
B(n, k).

3 Concluding remarks
In this paper we have enumerated maximal matchings in a class of cycle
related graphs, interesting from the viewpoint of topology of computer net-
works. Our results could be generalized in a straightforward way to similar
network configurations, in particular to multiple ring networks sharing a
single node, and we leave it to the interested reader. For both types of
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networks, several interesting problems remain unanswered. Of particular
interest would be to compare the results for two cycles with a larger num-
ber of vertices compared to cases with multiple cycles with a smaller number
of vertices. Some preliminary investigations are underway and we hope to
be able to report conclusive results soon.
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