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Abstract

We consider certain “S-sums” which are multiparametric generalizations
S(n,m; a1, ..., al) of sums of powers of binomial coefficients. A new class of binomial
sums, associated to the S-sums, is introduced. Also, some recursions for new sums are
presented and proved.

We present three applications of our new sums. The first application is for the
divisibility, by the central binomial coefficient, of the alternating sum of powers of
binomial coefficients. Our proof is given more simply then originally by Calkin (1998)
who used modular properties.

The second application is for the following binomial sum S: Zl+2
>=0 → Z ,

S(2n,m, a1, a2, . . . , al) =

2n∑
k=0

(−1)k
(

2n

k

)m l∏
i=1

(
ai + k

k

)(
ai + 2n− k

2n− k

)
;

which arises as a generalization of a known identity connected with a famous Dixon’s
formula. We claim that, if m is a positive integer, then S(2n,m, a1, a2, . . . , al) is
divisible by

(
2n
n

)
and

(
ai+n
n

)
for all i = 1, . . . , l. We give a proof for the case l = 1.

As a third application, we present an interesting connection between our new sums
and one Theorem by Guo, Jouhet and Zeng.

1 Introduction

Let m, n, and k be non-negative integers such that m ≥ 1. We consider the sum

S(n,m) =
n∑

k=0

(
n

k

)m

F (n, k), (1)

where F (n, k) is an integer-valued function that depends only on n and k.
The aim is to examine some divisibility properties of sums of the form S(n,m). To do

this, we introduce the notion of “M sums”.
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Definition 1. Let n, j, and t be non-negative integers such that j ≤ bn
2
c. Then the M sums

for S(n,m) are as follows:

MS(n, j, t) =

(
n− j

j

) n−2j∑
v=0

(
n− 2j

v

)(
n

j + v

)t

F (n, j + v). (2)

Obviously, for m ≥ 1, the equation

S(n,m) = MS(n, 0,m− 1) (3)

holds.
Hence, we can see the sum MS(n, j,m− 1) as a generalization of the sum S(n,m).
Let n, j, and t be as in Definition 1. We present our main theorem:

Theorem 2.

MS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t).

Theorem 2 gives a recursive definition of a MS sum.
For proving Theorem 2, we use a method of “D sums”.

2 Background

Recently, in our previous paper [8], the notion of “D sums” was introduced.
Let n, j, and t be as in Definition 1; and let S be as in Eq. (1).
Then the D sums for S(n,m) are

DS(n, j, t) =

n−2j∑
l=0

(
n− j

l

)(
n− j

j + l

)(
n

j + l

)t

F (n, j + l). (4)

For m ≥ 2, by Eq. (4), it follows that

S(n,m) = DS(n, 0,m− 2). (5)

Furthermore, D sums satisfy the following two recurrence relations [8, Thm. 2, p. 2], [11,
Eqns. (14) and (15), p. 4]:

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n

j + u

)(
n− j

u

)
DS(n, j + u, t), (6)

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n− j − u

j + u

) n−2j−2u∑
v=0

(
n− 2j − 2u

v

)
F (n, j + u + v). (7)
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Mikić New class of binomial sums and their applications

In 1998, Calkin [1, Thm. 1] proved that the alternating binomial sum
∑2n

k=0(−1)k
(
2n
k

)m
is divisible by

(
2n
n

)
for all non-negative integers n and all positive integers m. In 2007, Guo,

Jouhet, and Zeng proved, among other things, two generalizations of Calkin’s result [6, Thm.
1.2, Thm. 1.3, p. 2].

The first application of D sums [8, Section 8] was for proving Calkin’s result [1, Thm. 1].
Also, by using D sums, it was proved [8] that

∑2n
k=0

(
2n
k

)m|n− k| is divisible by n
(
2n
n

)
for all

non-negative integers n and all positive integers m.
By the same method, it was proved [11, Thm. 1] that

∑2n
k=0(−1)k

(
2n
k

)m(2k
k

)(
4n−2k
2n−k

)
is

divisible by
(
2n
n

)
for all non-negative integers n and all positive integers m. Furthermore,

it was proved [11, Corollary 4] that
∑2n

k=0(−1)k
(
2n
k

)m
CkC2n−k is divisible by

(
2n
n

)
for all

non-negative integers n; and for all positive integers m.

Let S(k, l) =
(2k

k )(2l
l )

(k+l
k )

denote the k-th super Catalan number of order l. Recently, it was

proved [10], that
∑2n

k=0(−1)k
(
2n
k

)m
S(k, l)S(2n−k, l) is divisible by S(n, l) for all non-negative

integers n and l and all positive integers m.
We will show that there is a close relationship between M -sums and D-sums.

3 Proof of Theorem 2

We need one auxiliary result.
We will use a symmetry of binomial coefficients and the well-known binomial identity(

a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
; (8)

where a, b, c are non-negative integers such that a ≥ b ≥ c.

Lemma 3. Let n and j be non-negative integers; and let t be a positive integer. Then the
following equation

MS(n, j, t) =

(
n

j

)
DS(n, j, t− 1). (9)

holds.

Proof. By Eq. (2), we know that

MS(n, j, t) =

n−2j∑
v=0

(
n− j

j

)(
n− 2j

v

)(
n

j + v

)t

F (n, j + v). (10)

Starting from Eq. (10), by using Eq. (8) and a symmetry of binomial coefficients, it is
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not hard to prove that:

MS(n, j, t) =

n−2j∑
v=0

(
n− j

n− 2j

)(
n− 2j

v

)(
n

j + v

)t

F (n, j + v)

=

(
n

j

) n−2j∑
v=0

(
n− j

v

)(
n− j

j + v

)(
n

j + v

)t−1

F (n, j + v).

By the definition of D sums (see Eq. (4)) and the last equation above, we conclude that

MS(n, j, t) =

(
n

j

)
DS(n, j, t− 1).

This completes the proof of Lemma 3.
Now, we are ready for the proof of main theorem 2. We will use Eqns. (6), (7), and

Lemma 3.
By Eq. (6), it follows that

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n

j + u

)
DS(n, j + u, t). (11)

Let us recall that t in Eq. (11) is a non-negative integer.
By Lemma 3, it follows that(

n

j + u

)
DS(n, j + u, t) = MS(n, j + u, t + 1). (12)

By Eq. (12), Eq. (11) becomes as follows:

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1). (13)

By multiplication of both sides of Eq. (13) with
(
n
j

)
, it follows that

(
n

j

)
DS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1) (14)

By Lemma 3, Eq. (14) becomes as follows:

MS(n, j, t + 2) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1)
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By setting t := t + 1, the last equation above becomes

MS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t); (15)

where, now, t is a positive integer.
Therefore, Theorem 2 follows from Eq. (15), if t is a positive integer.
For t = 0, we will use Eq. (7).
By Eq. (7), it follows that

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n− (j + u)

j + u

) n−2(j+u)∑
v=0

(
n− 2(j + u)

v

)
F (n, (j + u) + v)

=

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0).

By the last equation above, it follows that

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (16)

By multiplication of both sides of Eq. (16) with
(
n
j

)
, it follows that

(
n

j

)
DS(n, j, 0) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (17)

By Lemma 3, we know that

MS(n, j, 1) =

(
n

j

)
DS(n, j, 0).

By using the equation above, Eq. (17) becomes, as follows:

MS(n, j, 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (18)

It is readily verified that Eq. (18) proves Theorem 2 for the case t = 0.
Hence, Eqns. (15) and (18) complete the proof of Theorem 2.
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Remark 4. By Eqns. (13) and (16), it follows that

DS(n, j, t) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t); (19)

where t is a non-negative integer.
Eqns. (9) and (19) give connections between M and D sums.
Note that Theorem 2 can be proved without using D sums. See [8, Proof of Theorem 3,

p. 6].

4 How do we use “M” sums ?

In one particular situation, Theorem 2 implies a simple consequence which is important for
us.

Let n be a fixed non-negative integer. Let t0 be a non-negative integer, and let j be an
arbitrary integer in the range 0 ≤ j ≤ bn

2
c. Suppose that q = q(n) is a positive integer which

divides MS(n, j, t0) sums for all j in the given range. We want q to be as large as possible.
Then it can be shown, by Theorem 2, that q divides MS(n, j, t0 + 1) for all j in the given
range.

By induction, it follows that q divides MS(n, j, t) for all t such that t ≥ t0 and for all j
in the given range. By Eq. (3), it follows that q divides S(n, t + 1) for all t such that t ≥ t0.

See also [11, Section 5, p. 7].

5 The first application for the alternating sum

We give a proof of Calkin’s result [1, Thm. 1] by using M sums.
Let n be a non-negative integer and let m be a positive integer. Let

S1(2n,m) =
2n∑
k=0

(−1)k
(

2n

k

)m

.

Obviously, the sum S1(2n,m) is an instance of the sum (1), where F1(2n, k) = (−1)k.
We use the well-known identity [2, Eq. (1.25), p. 4]

2n∑
k=0

(−1)k
(

2n

k

)
=

{
0, if n > 0;

1, if n = 0,
(20)

where n is a non-negative integer.
By Eq. (20), we conclude that S1(2n, 1) is divisible by

(
2n
n

)
.
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Furthermore, it is known

S1(2n, 2) = (−1)n
(

2n

n

)
, (Kummer’s formula)

S1(2n, 3) = (−1)n
(

2n

n

)(
3n

2n

)
. (Dixon’s formula)

Therefore, it follows that S1(2n,m) is divisible by
(
2n
n

)
for 1 ≤ m ≤ 3.

Let us calculate MS1(2n, j, 0) sum; where j is a non-negative integer such that j ≤ n.
Without loss of generality, let us assume that n is a positive integer.
By Def. (1), it follows that

MS1(2n, j, 0) =

(
2n− j

j

) 2n−2j∑
v=0

(
2n− 2j

v

)(
2n

j + v

)0

F1(2n, j + v)

=

(
2n− j

j

) 2n−2j∑
v=0

(
2n− 2j

v

)
(−1)j+v.

By the last equation above, it follows that

MS1(2n, j, 0) = (−1)j
(

2n− j

j

) 2(n−j)∑
v=0

(−1)v
(

2(n− j)

v

)
. (21)

By Eqns. (20) and (21), it follows that

MS1(2n, j, 0) =

{
0, if 0 ≤ j < n;

(−1)n, if j = n.
(22)

Let us calculate MS1(2n, j, 1) sum. We will use Theorem 2 and Eq. (22).
By setting t = 0 in Theorem 2, it follows that

MS1(2n, j, 1) =

(
2n

j

) n−j∑
u=0

(
2n− j

u

)
MS1(2n, j + u, 0). (23)

By Eq. (22), it follows that

MS1(2n, j + u, 0) =

{
0, if 0 ≤ u < n− j;

(−1)n, if u = n− j.
(24)
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By Eq. (24), Eq. (23) becomes gradually

MS1(2n, j, 1) = (−1)n
(

2n

j

)(
2n− j

n− j

)
= (−1)n

(
2n

2n− j

)(
2n− j

n

)
(by symmetry)

= (−1)n
(

2n

n

)(
n

n− j

)
(by Eq. (8)).

By the lst equation above, it follows that

MS1(2n, j, 1) = (−1)n
(

2n

n

)(
n

j

)
. (25)

By setting j = 0 in Eq. (25) and by using Eq. (3), we obtain Kummer’s formula.
Furthermore, Eq. (25) suggets setting q1(2n) =

(
2n
n

)
.

By Theorem 2 and induction, it can be shown that MS1(2n, j, t) is divisible by
(
2n
n

)
for

all positive integers t and all integers j such that 0 ≤ j ≤ n.
Let m ≥ 2. By Eq. (3), we know that

S1(2n,m) = MS1(2n, 0,m− 1).

Since m− 1 ≥ 1, the sum MS1(2n, 0,m− 1) is divisible by
(
2n
n

)
. By Eq. (3), S1(2n,m) is

divisible by
(
2n
n

)
for m ≥ 2.

This proves Calkin’s result.

Remark 5. By using M -sums, we also can prove Dixon’s formula [5, 9]. Namely, by using
Theorem 2, Eq. (25), and the Vandermonde identity, it can be shown that

MS1(2n, j, 2) = (−1)n
(

2n

n

)(
2n

j

)(
3n− j

2n

)
. (26)

By setting j = 0 in Eq. (26) and by using Eq. (3), we obtain Dixon’s formula.

6 A generalization of new sums

We begin with the following definition:

Definition 6. Let m, n, k, a1, a2, . . ., al be non-negative integers such that m ≥ 1. We
consider the sum:

S(n,m; a1, a2, . . . , al) =
n∑

k=0

(
n

k

)m

F (n, k; a1, a2, . . . , al), (27)

where F (n, k; a1, a2, . . . , al) is an integer-valued function.
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The aim is to examine some divisibility properties of sums of the form S(n,m, a1, a2, . . . , al).
To do this, we introduce a natural generalization of a notion of M sums.

Definition 7. Let n, j, t, a1, a2, . . ., al be non-negative integers such that j ≤ bn
2
c. Then

the M sums for S(n,m; a1, a2, . . . , al) are as follows:

MS(n, j, t; a1, a2, . . . , al) =

(
n− j

j

) n−2j∑
v=0

(
n− 2j

v

)(
n

j + v

)t

F (n, j + v; a1, a2, . . . , al). (28)

Obviously, for m ≥ 1, the equation

S(n,m; a1, a2, . . . , al) = MS(n, 0,m− 1; a1, a2, . . . , al) (29)

holds.
Eqns. (28) and (29) are similar with Eqns. (2) and (3), respectively.
Let n, j, t, a1, a2, . . ., al be as in Definition 7. Then the following theorem is true:

Theorem 8.

MS(n, j, t + 1; a1, a2, . . . , al) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t; a1, a2, . . . , al).

The proof of Theorem 8 is similar with the proof of Theorem 2.

Remark 9. Similarly, we can introduce a natural generalization of a notion of D sums. Let
n, j, t, a1, a2, . . ., al be non-negative integers such that j ≤ bn

2
c. Then the D sums for

S(n,m; a1, a2, . . . , al) are as follows:

DS(n, j, t; a1, a2, . . . , al) =

n−2j∑
v=0

(
n− j

v

)(
n− j

j + v

)(
n

j + v

)t

F (n, j + v; a1, a2, . . . , al). (30)

Obviously, for m ≥ 2, the equation

S(n,m; a1, a2, . . . , al) = DS(n, 0,m− 2; a1, a2, . . . , al) (31)

holds.
Also, it can be readily verified that

DS(n, j, t + 1; a1, a2, . . . al) =

bn−2j
2
c∑

u=0

(
n

j + u

)(
n− j

u

)
DS(n, j + u, t; a1, a2, . . . al), (32)

MS(n, j, t; a1, a2, . . . al) =

(
n

j

)
DS(n, j, t− 1; a1, a2, . . . al), (33)

DS(n, j, t; a1, a2, . . . al) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t; a1, a2, . . . al) (34)

Eqns. (31), (32), (33), and (34) are similar with Eqns. (5), (6), (9), and (19), respectively.
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7 The second application of new sums

Let us consider the following binomial sum S: Zl+2
>=0 → Z

S(2n,m; a1, a2, . . . , al) =
2n∑
k=0

(−1)k
(

2n

k

)m l∏
i=1

(
ai + k

k

)(
ai + 2n− k

2n− k

)
;

where l is a positive integer and n, m, a1, a2, . . ., al are non-negative integers.
For m = 1 and l = 1, the sum S reduces to an interesting combinatorial identity. It is

known [3, Eq. (6.56), p. 29] that

2n∑
k=0

(−1)k
(

2n

k

)(
a + k

k

)(
a + 2n− k

2n− k

)
= (−1)n

(
2n

n

)(
a + n

2n

)
. (35)

By using Eq. (30), it follows that S(2n, 1, a1) = (−1)n
(
2n
n

)(
a1+n
2n

)
.

Moreover, the following formula

2n∑
k=0

(−1)k
(

2n

k

)(
a + k

k

)(
a + 2n− k

2n− k

)
=

2n∑
k=0

(−1)k
(

2n

k

)(
a

k

)(
a

2n− k

)
(36)

holds. Note that the right-side of Eq. (36) is an instance of the well-known Dixon’s formula
[9]. Furthermore, the right-side of Eq. (36) has the following generalization:

R(2n,m, a1, a2, . . . , al) =
2n∑
k=0

(−1)k
(

2n

k

)m l∏
i=1

(
ai
k

)(
ai

2n− k

)
. (37)

Remark 10. By using the ”upper negation” [4, Eq. (5.14), p. 164], it follows that
S(2n,m; a1, a2, . . . , al) = R(2n,m;−a1−1, . . . ,−al−1). Hence, parameters a1, . . ., al in the
definition of the sum S need not to be positive.

In 1998, Calkin [1, Thm. 1] proved that the alternating binomial sum
∑2n

k=0(−1)k
(
2n
k

)m
is divisible by

(
2n
n

)
for all non-negative integers n and all positive integers m. It follows that

R(2n,m, 2n) is divisible by
(
2n
n

)
for all non-negative integers n and m.

In 2007, Guo, Jouhet, and Zeng proved, among other things, two generalizations of
Calkin’s result [6, Thm. 1.2, Thm. 1.3, p. 2]. As a special case of [6, Thm. 1.2, p. 2], they
gave a direct generalization of Calkin’s result [6, Thm. 1.4, p. 8] which is as follows:

Theorem 11. Let s be a positive integer greater than 1, and let k, n1, n2, . . .,ns be non-
negative integers. Then the sum

n1∑
k=−n1

(−1)k
s∏

i=1

(
ni + ni+1

ni + k

)
is divisible by

(
n1+ns

n1

)
, where ns+1 = n1.

54
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By Theorem 11, it follows that the sum R(2n,m, a1, a2, . . . , al) is divisible by
(
2n
n

)
and by(

ai
n

)
for all i = 1, l. Take s = m + 2l, n1 = n2 = . . . = nm = n and nm+1 = a− n, nm+2 = n,

. . . nm+2l−1 = a− n, nm+2l = n in Theorem 11.
The sum R(2n,m, a1, a2, . . . , al) is a generalization of the right-side of Eq. (36), while the

sum S(2n,m, a1, a2, . . . , al) is a generalization of the left-side of Eq. (36).
We claim that

Theorem 12. If m is a positive integer, then S(2n,m, a1, a2, . . . , al) is divisible by
(
2n
n

)
and(

ai+n
n

)
for all i = 1, . . . , l.

Proof. We give a proof only for the case l = 1. For the sake of brevity and clarity, the rest
of the proof of Theorem 12 is omitted.

We consider the following sum

S(2n,m; a) =
2n∑
k=0

(−1)k
(

2n

k

)m(
a + k

k

)(
a + 2n− k

2n− k

)
;

where a is a non-negative integer.
Obviously, the sum S(2n,m; a) is an instance of Eq. (27); where F (2n, k; a) = (−1)k

(
a+k
k

)(
a+2n−k
2n−k

)
.

By Definition (7) and Eq. (28), it follows that

MS(2n, j, 0; a) =

(
2n− j

j

) 2n−2j∑
v=0

(−1)v
(

2n− 2j

v

)(
a + j + v

j + v

)(
a + 2n− j − v

2n− j − v

)
. (38)

By using substitution v = k − j, Eq. (38) becomes

MS(2n, j, 0; a) = (−1)j
(

2n− j

j

) 2n−j∑
k=j

(−1)k
(

2n− 2j

k − j

)(
a + k

k

)(
a + 2n− k

2n− k

)
. (39)

It is readily verified that (by Eq. (8))(
2n− j

j

)(
2n− 2j

k − j

)
=

(
2n− j

k − j

)(
2n− k

2n− k − j

)
. (40)

By using Eq. (40), Eq. (39) reduces to

MS(2n, j, 0; a) = (−1)j
2n−j∑
k=j

(−1)k
(

2n− j

k − j

)(
2n− k

2n− k − j

)(
a + k

k

)(
a + 2n− k

2n− k

)
. (41)

It is readily verified that (by Eq. (8))(
a + 2n− k

2n− k

)(
2n− k

2n− k − j

)
=

(
a + 2n− k

a + j

)(
a + j

j

)
. (42)
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By using Eq. (42), Eq. (41) becomes

MS(2n, j, 0; a) = (−1)j
(
a + j

j

) 2n−j∑
k=j

(−1)k
(

2n− j

k − j

)(
a + k

a

)(
a + 2n− k

a + j

)
. (43)

Now we use a well-known Stanley’s formula:

min(m,n)∑
l=0

(
a

m− l

)(
b

n− l

)(
a + b + l

l

)
=

(
a + n

m

)(
b + m

n

)
. (44)

Remark 13. The identity 44 is equivalent to the triple binomial identity
[4, Eq. (5.28), p. 171]; first proved by J. F. Pfaff [12]. See also [7, Ex. 31, p. 71] and [13,
Problem 14, p. 4].

By Stanley’s formula (44), it follows that

a∑
l=0

(
2n− k

a + j − l

)(
k − j

a− l

)(
2n− j + l

l

)
=

(
a + 2n− k

a + j

)(
a + k

a

)
. (45)

By using Eq. (45), Eq. (43) reduces to:

MS(2n, j, 0; a) = (−1)j
(
a + j

j

) 2n−j∑
k=j

(−1)k
(

2n− j

k − j

) a∑
l=0

(
2n− k

a + j − l

)(
k − j

a− l

)(
2n− j + l

l

)
.

By changing the order of summation in the equation above, it follows that MS(2n, j, 0; a)
is equal to

(−1)j
(
a + j

j

) a∑
l=0

(
2n− j + l

l

) 2n−(j+a−l)∑
k=j+a−l

(−1)k
(

2n− j

k − j

)(
2n− k

a + j − l

)(
k − j

a− l

)
. (46)

It is readily verified that (by Eq. (8))(
2n− j

k − j

)(
2n− k

a + j − l

)
=

(
2n− j

a + j − l

)(
2n− 2j − a + l

k − j

)
. (47)

By using Eqns. (46) and (47), it follows that MS(2n, j, 0; a) is equal to

(−1)j
(
a + j

j

) a∑
l=0

(
2n− j + l

l

)(
2n− j

a + j − l

) 2n−(j+a−l)∑
k=j+a−l

(−1)k
(

2n− 2j − a + l

k − j

)(
k − j

a− l

)
.

We know that(
2n− 2j − a + l

k − j

)(
k − j

a− l

)
=

(
2n− 2j − a + l

a− l

)(
2n− 2j − 2a + 2l

k − j − a + l

)
.
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By using the last two equation above, it follows that MS(2n, j, 0; a) is equal to

(−1)j
(
a + j

j

) a∑
l=0

(
2n− j + l

l

)(
2n− j

a + j − l

)(
2n− 2j − a + l

a− l

) 2n−(j+a−l)∑
k=j+a−l

(−1)k
(

2n− 2j − 2a + 2l

k − j − a + l

)
.

Note that (by Eq. (8))(
2n− j

a + j − l

)(
2n− 2j − a + l

a− l

)
=

(
2n− j

a− l

)(
2n− j − a + l

j + a− l

)
.

By using the last two equation above, it follows that MS(2n, j, 0; a) is equal to

(−1)j
(
a + j

j

) a∑
l=0

(
2n− j + l

l

)(
2n− j

a− l

)(
2n− j − a + l

j + a− l

) 2n−(j+a−l)∑
k=j+a−l

(−1)k
(

2n− 2j − 2a + 2l

k − j − a + l

)
.

(48)
By Eq. (20), it follows that

2n−j−a+l∑
k=j+a−l

(−1)k
(

2n− 2j − 2a + 2l

k − j − a + l

)
=

{
0, if n− j − a + l > 0;

(−1)j+a−l, if n− j − a + l = 0,
(49)

By Eq. (49), it follows that only non-vanishing term in Eq. (48) is for l = a + j − n.
Therefore, by Eq. (48), it follows that MS(2n, j, 0; a) is equal to

(−1)n−j
(
a + j

j

)(
2n− j + (a + j − n)

a + j − n

)(
2n− j

a− (a + j − n)

)(
2n− j − a + (a + j − n)

j + a− (a + j − n)

)
.

From the last equation above and symmetry of binomial coefficients, it follows that

MS(2n, j, 0; a) = (−1)n−j
(
a + j

j

)(
a + n

2n− j

)(
2n− j

n

)
. (50)

Note that (by Eq. (8))(
a + n

2n− j

)(
2n− j

n

)
=

(
a + n

n

)(
a

n− j

)
. (51)

Therefore, by using Eq. (51), Eq. (50) reduces to

MS(2n, j, 0; a) = (−1)n−j
(
a + j

j

)(
a + n

a

)(
a

n− j

)
. (52)

Eq. (52) suggets setting q2(2n, a) =
(
a+n
a

)
. Obviously, q2(2n, a) does not depend on j.

By Theorem 8 and induction, it can be shown that MS(2n, j, t; a) is divisible by
(
a+n
a

)
for all non-negative integers t and all integers j such that 0 ≤ j ≤ n.
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Let m ≥ 1. By Eq. (29), we know that

S(2n,m; a) = MS(2n, 0,m− 1; a).

Since m ≥ 1, the sum MS(2n, 0,m− 1; a) is divisible by
(
a+n
a

)
. By Eq. (29), S(2n,m; a)

is divisible by
(
a+n
a

)
for all positive m.

Let us prove that S(2n,m; a) is divisible by
(
2n
n

)
for all positive m and for all non-negative

integers n and a.
By setting j = 0 in Eq. (50) and by using Eq. (29), we obtain Eq. (35). It follows that(

2n
n

)
divides S(2n, 1; a).

Let us calculate MS(2n, j, 1; a) sum. We will use Theorem 8 and Eq. (50).
By setting t = 0 in Theorem 8, we obtain that

MS(2n, j, 1; a) =

(
2n

j

) n−j∑
u=0

(
2n− j

u

)
MS(2n, j + u, 0; a). (53)

By using Eq. (50), it follows that

MS(2n, j + u, 0; a) = (−1)n−j−u
(
a + j + u

j + u

)(
a + n

2n− j − u

)(
2n− j − u

n

)
. (54)

It is readily verified that (by Eq. (8))(
2n

j

)(
2n− j

u

)
=

(
2n

2n− j − u

)(
j + u

u

)
.

By the last equation above, Eq. (53) becomes

MS(2n, j, 1; a) =

n−j∑
u=0

(
2n

2n− j − u

)(
j + u

u

)
MS(2n, j + u, 0; a). (55)

By Eqns. (54) and (55), MS(2n, j, 1; a) is equal to

n−j∑
u=0

(
2n

2n− j − u

)(
j + u

u

)
(−1)n−j−u

(
a + j + u

j + u

)(
a + n

2n− j − u

)(
2n− j − u

n

)
. (56)

Note that (by Eq. (8))(
2n

2n− j − u

)(
2n− j − u

n

)
=

(
2n

n

)(
n

j + u

)
.

By using the last equation above, it follows that

MS(2n, j, 1; a) =

(
2n

n

) n−j∑
u=0

(
n

j + u

)(
j + u

u

)
(−1)n−j−u

(
a + j + u

j + u

)(
a + n

2n− j − u

)
. (57)
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By Eq. (57), Theorem 8, and induction, it can be shown that MS(2n, j, t; a) is divisible
by
(
2n
n

)
for all positive integers t and all integers j such that 0 ≤ j ≤ n.

Let m ≥ 2. By Eq. (29), we know that

S(2n,m; a) = MS(2n, 0,m− 1; a).

Since m ≥ 2, the sum MS(2n, 0,m− 1; a) is divisible by
(
2n
n

)
. By Eq. (29), S(2n,m; a) is

divisible by
(
2n
n

)
for all positive m and for all non-negative integers n and a.

8 The third application of new sums

There is an interesting connection between Theorem 11 and M -sums.
We assert that the following implication is true:

Theorem 14. Let s be a fixed positive integer greater than 2, and let k, n1, n2, . . .,ns be
arbitrary non-negative integers. Let us suppose that the sum

n1∑
k=−n1

(−1)k
s∏

i=1

(
ni + ni+1

ni + k

)

is divisible by
(
n1+ns

n1

)
, where ns+1 = n1. Then, by using M sums and the assumption above,

it follows that the following sum

n1∑
k=−n1

(−1)k
(

2n1

k + n1

)m

·
s−1∏
i=1

(
ni + ni+1

ni + k

)

is divisible by
(
2n1

n1

)
,
(
n1+n2

n1

)
, . . . ,

(
ns−2+ns−1

ns−2

)
, and

(
n1+ns−1

n1

)
; where m is an arbitrary positive

integer and ns = n1.

Proof. For m = 1, the proof of Theorem 14 directly follows from our assumption.
Let us suppose that m ≥ 2.
Let P (2n1,m;n2, . . . , ns−1) denote

∑n1

k=−n1
(−1)k

(
2n1

k+n1

)m ·∏s−1
i=1

(
ni+ni+1

ni+k

)
.

By using substitution u = k + n1, it follows that

P (2n1,m;n2, . . . , ns−1) =

2n1∑
u=0

(−1)u−n1

(
2n1

u

)m

·
s−1∏
i=1

(
ni + ni+1

u + ni − n1

)
.

Obviously, the sum P (2n1,m;n2, . . . , ns−1) is an instance of the sum from Definition 6;
where

F (2n1, u;n2, . . . , ns−1) = (−1)u−n1

s−1∏
i=1

(
ni + ni+1

u + ni − n1

)
. (58)

59
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By using Definition 7 and Eq. (28), we obtain that

MP (2n1, j, 0;n2, . . . ns−1) =

(
2n1 − j

j

) 2n1−2j∑
v=0

(
2n1 − 2j

v

)
F (2n1, j + v;n2, . . . ns−1). (59)

By using substitution u = v + j, the Eq. (59) reduces to

MP (2n1, j, 0;n2, . . . ns−1) =

(
2n1 − j

j

) 2n1−j∑
u=j

(
2n1 − 2j

u− j

)
F (2n1, u;n2, . . . ns−1). (60)

By using Eq. (58), it follows that MP (2n1, j, 0;n2, . . . ns−1) is equal to the following sum(
2n1 − j

j

) 2n1−j∑
u=j

(
2n1 − 2j

u− j

)
(−1)u−n1

s−1∏
i=1

(
ni + ni+1

u + ni − n1

)
. (61)

It is readily verified that (by Eq. (8))(
2n1 − j

j

)(
2n1 − 2j

u− j

)
=

(
2n1 − j

u− j

)(
2n1 − u

j

)
. (62)

By using Eqns. (61) and (62), it follows that MP (2n1, j, 0;n2, . . . ns−1) is equal to

2n1−j∑
u=j

(−1)u−n1

(
2n1 − j

u− j

)(
2n1 − u

j

) s−1∏
i=1

(
ni + ni+1

u + ni − n1

)
. (63)

By a symmetry of binomial coefficients, we know that the last term in a product equals(
ns−1 + n1

u + ns−1 − n1

)
=

(
ns−1 + n1

2n1 − u

)
.

The right-side of Eq. (63) can be rewritten as

2n1−j∑
u=j

(−1)u−n1

(
2n1 − j

u− j

)(
ns−1 + n1

2n1 − u

)(
2n1 − u

j

) s−2∏
i=1

(
ni + ni+1

u + ni − n1

)
(64)

It is readily verified that (by Eq. (8))(
ns−1 + n1

2n1 − u

)(
2n1 − u

j

)
=

(
ns−1 + n1

j

)(
ns−1 + n1 − j

u + ns−1 − n1

)
. (65)

By using Eqns. (64) and (65), it follows that MP (2n1, j, 0;n2, . . . ns−1) is equal to(
ns−1 + n1

j

) 2n1−j∑
u=j

(−1)u−n1

(
ns−1 + n1 − j

u + ns−1 − n1

)(
2n1 − j

u− j

) s−2∏
i=1

(
ni + ni+1

u + ni − n1

)
. (66)
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By using substitution p = u− n1 in Eq. (66), it follows that MP (2n1, j, 0;n2, . . . ns−1) is
equal to(

ns−1 + n1

j

) n1−j∑
p=−(n1−j)

(−1)p
(

(n1 − j) + n1

p + n1 − j

)(s−2∏
i=1

(
ni + ni+1

p + ni

))(ns−1 + (n1 − j)

p + ns−1

)
. (67)

By using our assumption in Theorem 14, it follows that inner sum in Eq. (67) is divisible
by integers

(
2n1−j
n1

)
,
(
n1+n2

n1

)
, . . . ,

(
ns−2+ns−1

ns−2

)
, and by

(
ns−1+n1−j

ns−1

)
.

Therefore, we obtain that MP (2n1, j, 0;n2, . . . ns−1) is divisible by integers
(
2n1−j
n1

)
,
(
n1+n2

n1

)
,

. . . ,
(
ns−2+ns−1

ns−2

)
, and by

(
ns−1+n1−j

ns−1

)
for all non-negative integers j such that j ≤ n1.

By using Theorem 8 and the induction principle, it can be shown that MP (2n1, j, t;n2, . . . ns−1)
is divisible by integers

(
n1+n2

n1

)
, . . . ,

(
ns−2+ns−1

ns−2

)
for all non-negative integers t and j such that

j ≤ n1. By using Eq. (29), it follows that the sum P (2n1,m;n2, . . . , ns−1) is divisible by
integers

(
n1+n2

n1

)
, . . . ,

(
ns−2+ns−1

ns−2

)
for all positive integers m.

Let us prove that P (2n1,m;n2, . . . , ns−1) is divisible by
(
2n1

n1

)
for all positive integers

m ≥ 2.
By setting t = 0 in Theorem 8, we obtain that

MS(2n1, j, 1;n2, . . . ns−1) =

(
2n1

j

) n1−j∑
u=0

(
2n1 − j

u

)
MS(2n1, j + u, 0;n2, . . . ns−1). (68)

We know that MS(2n1, j + u, 0;n2, . . . ns−1) =
(
2n1−(j+u)

n1

)
· c(j, u, n1, . . . , ns−1); where

c(j, u, n1, . . . , ns−1) is an integer.
By using Eq. (68), we have gradually

MS(2n1, j, 1;n2, . . . ns−1) =

(
2n1

j

) n1−j∑
u=0

(
2n1 − j

u

)(
2n1 − j − u

n1

)
· c(j, u, n1, . . . , ns−1)

MS(2n1, j, 1;n2, . . . ns−1) =

n1−j∑
u=0

(
2n1

j

)(( 2n1 − j

2n1 − j − u

)(
2n1 − j − u

n1

))
· c(j, u, n1, . . . , ns−1)

MS(2n1, j, 1;n2, . . . ns−1) =

n1−j∑
u=0

(
2n1

j

)((2n1 − j

n1

)(
n1 − j

n1 − j − u

))
· c(j, u, n1, . . . , ns−1)

MS(2n1, j, 1;n2, . . . ns−1) =

n1−j∑
u=0

(( 2n1

2n1 − j

)(
2n1 − j

n1

))( n1 − j

n1 − j − u

)
· c(j, u, n1, . . . , ns−1)

MS(2n1, j, 1;n2, . . . ns−1) =

(
2n1

n1

) n1−j∑
u=0

(
n1

j

)(
n1 − j

u

)
· c(j, u, n1, . . . , ns−1). (69)

By using the Eq. (69), it follows that MS(2n1, j, 1;n2, . . . ns−1) is divisible by
(
2n1

n1

)
for all

non-negative j such that j ≤ n1.
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By using Eq. (29), it follows that the sum P (2n1,m;n2, . . . , ns−1) is divisible by
(
2n1

n1

)
for

all positive integers m such that m ≥ 2.
Finally, let us prove that P (2n1,m;n2, . . . , ns−1) is divisible by

(
n1+ns−1

n1

)
for all positive

integers m.
By Eq. (67) and our assumption, it follows that

MP (2n1, j, 0;n2, . . . ns−1) =

(
ns−1 + n1

j

)(
n1 − j + ns−1

ns−1

)
· d(n1 − j, n2, . . . , ns−1); (70)

where d(n1 − j, n2, . . . , ns−1) is an integer.
It is readily verified that (by Eq. (8))(

ns−1 + n1

j

)(
n1 − j + ns−1

ns−1

)
=

(
n1 + ns−1

ns−1

)(
n1

j

)
. (71)

By using Eq. (71), Eq. (70) becomes

MP (2n1, j, 0;n2, . . . ns−1) =

(
n1 + ns−1

ns−1

)(
n1

j

)
· d(n1 − j, n2, . . . , ns−1). (72)

By using Theorem 8 and the induction principle, it can be shown that MP (2n1, j, t;n2, . . . ns−1)
is divisible by an integer

(
n1+ns−1

ns−1

)
for all non-negative integers t and j such that j ≤ n1.

By using Eq. (29), it follows that the sum P (2n1,m;n2, . . . , ns−1) is divisible by an integer(
n1+ns−1

ns−1

)
for all positive integers m.

This completes the proof of Theorem 14.
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