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Abstract

In recent years, 3D printing in the construction industry has gained significant interest
due to its ability to create complex structural forms with notable savings in both time and
cost. Despite this growing interest, it continues to face various technical and operational
difficulties. In order for 3D printed concrete to have a meaningful, long-term influence on
construction practices it is essential to develop strategy for integrating reinforcement
without contradicting the advantages that the 3D printing process delivers. This paper
seeks to give a comprehensive review of the current developments on reinforcement
strategies for 3D printed structures.
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Armiranje 3D printanog betona - izazovi i trenutna
postignuca

Sazetak

U posljednjih nekoliko godina, 3D printanje u gradevinskoj industriji izazvalo je znacajan
interes zbog svoje sposobnosti stvaranja slozenih oblika konstrukcije uz znatne ustede
vremena i troskova. Unatoc rastucem interesu, tehnologija i dalje nailazi na razne tehnic-
ke i operativne poteSkoce. Kako bi konstrukcije od 3D printanog betona imale znacajan i
dugorocan utjecaj na gradevinsku struku nuzno je osmisliti nacine integriranja armature
koji ne kontriraju prednostima koje proces 3D printanja omogucuje. Cilj ovog rada je pruZiti
sveobuhvatan pregled trenutnog razvoja u podrucju armiranja 3D printanih konstrukcija

Kljucne rijeci: 3D printani beton, aditivna proizvodnja, slojevito istiskivanje, armatura, viakna
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1 Introduction

The fundamental concept behind 3D printing involves fabricating structures lay-
er by layer, where three-dimensional components are created using comput-
er-aided-design. Among the available 3D printing technologies, the ones that
have attracted the most interest in the construction industry are binder jetting
and layered extrusion. In binder jetting, a bed of dry powder is selectively bound
by spraying water, applying a liquid binder, or injecting cement paste into layers
of aggregate. In the layered extrusion method, pre-mixed concrete is extrud-
ed through a nozzle, mounted on either a gantry or a robotic arm, to form the
structure. For the construction of large-scale buildings, which is the central topic
of this discussion, the most widely adopted process is an automated technique
called Contour Crafting (CC), which was developed by Khoshnevis [1]. The use
of 3D printed concrete (3DPC) in construction offers several notable benefits.
Despite some ongoing debate, it is widely believed that the cost of producing
structural elements through 3D printing is lower compared to conventional con-
struction methods, and the total time required to complete a building project can
be greatly reduced mainly by eliminating the need for formwork. Additionally, the
approach is seen as more environmentally friendly because 3D printing produces
significantly less material waste and dust than traditional building practices [2].

The composition of 3DPC mixtures is based on wet-mixed mortars initially devel-
oped for spray applications. The mortar used generally contains a high concentra-
tion of cement and fine aggregates, because the use of coarse aggregates could
cause nozzle blockage. Coarse aggregates play a key role in minimizing shrink-
age, therefore, in combination with the low water-to-cement ratios, printable
concrete mixes are highly prone to cracking. To address this issue, the inclusion
of additives such as superplasticizers and retarders, viscosity-modifying agents
and accelerators is necessary. The rheological characteristics of low-flowable
mixtures continually evolve due to the ongoing hydration reactions defining a
limited time window within which the 3DPC maintains acceptable performance
in a fresh-state. If long interruptions occur during the printing process, extended
pauses between layers may result in cold joints, where weak interlayer bonding
compromises structural integrity.

The fundamental difference, compared to the conventional concrete, is the ani-
sotropy of 3DPC, mainly due to the layered structure created during the printing
process. While cast concrete cubes fail in a typical cone-shaped manner, cracks
in the printed samples develop parallel to the direction of compression [3]. This
crack pattern results from the alignment of deposited filaments parallel to the
load direction, with the interfaces between these filaments being inherently
weak and more susceptible to separation or cracking under stress [3]. Conse-
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quently, 3DPC exhibits greater strength in the vertical (layer-stacking) direction
than in the horizontal one. In study by Pham et al. [4] the printed sample tested in
direction perpendicular to the layer orientation showed greater flexural strength
than the cast samples.

2 Reinforcement strategies

For 3DCP to be viable in real-world structural applications, components must
withstand significant tensile forces. Mortar alone is insufficient, so steel or other
reinforcement is needed. These must allow for ductile structural performance, be
cost-effective, maintain geometric flexibility, and align with automated produc-
tion methods.

2.1 Conventional reinforcement

The firstand most straightforward method for integrating reinforcement involves
using traditional steel reinforcement within the printed structure according to
current engineering standards. Reinforcing bars are placed manually into the
printed concrete and then covered with a following layer of concrete. In addition
to steel bars, steel wire mesh could be placed manually onto the freshly printed
concrete [3] (Figure 1a). An additional method is to vertically install steel mesh in
place first and then apply concrete layer by layer, effectively enclosing the mesh
reinforcement from both sides [5] using a modified forked nozzle (Figure 1b). This
technique has been commercially employed by the Chinese company HuaShang
Tengda [6]. While promising, this approach faces several constraints - the mesh
height is limited by the nozzle size, reinforcement is restricted to layers close to
the wall's centerline and only vertical walls (without slope) can be produced [7].
Generally, the major issue is the lack of continuous vertical reinforcement and
bonding between reinforced bars and 3D printed specimens, considering that re-
inforcement is placed on top of every layer manually. In [8] authors noted that
the bond strength of reinforcement bars and 3DPC was lower than in mold-cast
samples, due to inter-layer defects introduced during the extrusion-based print-
ing process. A contributing factor is the low fluidity of the freshly printed mortar,
which limits its ability to properly fill reinforcement grooves. Furthermore, the
printing direction also influenced bond performance, in particular, parallel-print-
ed specimens demonstrated slightly higher bond strength between reinforcing
bars and concrete compared to inclined ones, while vertically printed specimens
had the weakest bonding performance. Most common method to include steel
reinforcement in 3DPC is to create a permanent integrated formwork and place
both vertical and horizontal reinforcements inside before pouring in the concrete
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(Fig 1c) [9]. This technique maintains the mold-free benefit of 3DPC while align-
ing with conventional reinforcement practices, thereby enabling the continued
use of existing structural design standards.

Micro-cable

Nozzle

L Printing direction

Filament

Geapalymer

Figure 1. Different reinforcement strategies: a) manual placement of wire mesh [3], b) modified
forked nozzle [7], c) permanent formwork produced by CC [2], d) externally prestre-
ssed girder [10], e) on site assembly of bicycle bridge [11], f) schematic illustration of
printer with embedded micro-cable [12], g) scheme of nail placement across the layers
[13], h) profiled 3D printed reinforcement bars [14] i) steel cable supported bridge [15]
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Reinforcement elements can be inserted across the interfaces between layers
to improve bonding between layers and mechanical performance (Fig 1g). The
addition of nails to the layered structure of the printed cement [13] enhanced
bending strength by up to 50%, depending on whether the nails were smooth or
rusty and the angle at which they were inserted. U-shaped nails [16] have been
shown to act as dowels when placed across interfaces, leading to improvements
in tensile bonding strength up to 62% and shear bonding strength by as much as
120%.

2.2 Automated reinforcement

Mechtcherine et al. [14] proposed a novel approach to overcome challenges like
pre-bending bars, automated placement and bonding between reinforcement
and concrete by printing both the reinforcement and the concrete as simultane-
ously as possible. In WAAM (Wire Arc Additive Manufacturing) method, the re-
inforcement is constructed drop by drop, allowing for high geometric flexibility
i.e. locally increasing thickness of the printed bars to enhance the bond between
concrete and the reinforcement (Figure 1h). However, this approach is challenged
by high localized temperatures in reinforcement zones, which could possibly
damage the concrete, and shorter printing time of steel reinforcement than con-
crete which could form cold joints in concrete. In addition to short fibers, long
reinforcements—Ilike wires, chains, and cables—can also be embedded within
the extruded material during the printing process (Figure 1f). Including embedded
flexible wire reinforcement directly into the extruded filament through devices
attached to the nozzle [12], eliminates the need for additional placement au-
tomation. In such cases, the reinforcement material needs to be flexible enough
to change direction easily with the printer head, but not too soft to avoid tan-
gling. Furthermore, the reinforcement feeding must be synchronized with nozzle
movement to prevent misalignment. Both swinging (in a case of excessively stiff
reinforcement) and poor synchronization can displace the reinforcement relative
to the cement matrix, leading to voids. These voids and air gaps pose a serious
risk to 3D printed structures by allowing harmful substances to penetrate, ulti-
mately reducing long-term durability. Another limitation is that this method only
provides interlayer reinforcement and does not bridge layers. Because of that, it
is often used with other reinforcement strategies.

2.3 Prestressed reinforcement

External prestressed reinforcement is a commonly used approach in the assem-
bly of prefabricated components for large-span structures, such as bridges. This
method was explored in the assembly of structurally optimized post-tensioned
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3D printed girder with a span of 3 m [10]. In this case, steel bars were placed
externally, anchored into holes at the corners of the printed components, which
were later filled with high-strength cement-based mortar (Figure 1d). The re-
searchers showed that the initial flexural stiffness of the externally reinforced
beam structure was comparable to that of an equivalent solid beam. Howev-
er, cracks formed at the anchor points during tensile testing, compromising the
structure’s overall nonlinear flexural performance. This strategy must also ad-
dress the issue of corrosion of exposed steel reinforcements.

Another approach involves designing internal voids into the print, forming con-
duits which allow placement and anchoring of steel reinforcement or cables,
which are eventually prestressed and grouted. A practical implementation of
post-tensioning strands is the world's first 3D-printed bicycle bridge, developed
by TU Eindhoven and BAM [11]. Its segments were fabricated off-site and then
assembled using prestressed steel strands anchored in cast concrete end blocks,
passing through internal integrated channels of printed parts (Figure 1e). Li et
al. [15] utilized composite structural system where pre-tensioned steel cables
supported the 3DPC components, allowing them to perform at high levels with-
out additional reinforcement, particularly suitable for structural applications like
bridges and roofs.

2.4 Fibers

Although fiber-reinforced concrete (FRC) has been researched for years, its prac-
tical use remains limited to elements where compressive forces are dominat-
ing, mostly because conventional FRC often exhibits strain-softening behavior,
which leads to localized failure and lacks the ductility needed for reliable struc-
tural design.

In 3DPC, fibers are typically added after the initial wet mixing phase to ensure
uniform dispersion while maintaining the mix’s rheological properties essential
for smooth extrusion. When the brittle cement-based matrix experiences crack-
ing under tensile stress, the randomly distributed fibers within the composite are
capable of bridging across the crack. These fibers limit the crack’s width, while si-
multaneously bearing the tensile load. Because of this mechanism, it is energet-
ically more demanding to further widen the existing microcrack than to initiate a
new microcrack in a different area of the matrix [17]. This way, composite mate-
rial evenly distributes the deformation and effectively prevents catastrophic brit-
tle failure. Based on [18] increasing the fiber ratio, the crack spacing and number
of cracks increased, regardless of fiber length. In the Figure 2, flexural stress —
strain curves for brittle and ductile failure of fiber reinforced 3D printed concrete
(FR3DPC) are shown. Curve representing ductile failure has three significant
stages. The first stage ends when the initial cracking occurs, it demonstrates a
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linear-elastic behavior in flexural response and is based on tensile resistance of
cement-based matrix. After the initial drop in stress, FR3DPC shows a renewed
increase in stress, indicating strain-hardening behavior and beginning of the next
stage. Stress transfer between fibers and matrix occurs, known as fiber bridge
mechanism. Bending stress increases non-linearly up to ultimate value. In the fi-
nal stage, flexural stress decreases with displacement. Although the material still
exhibits a strain-softening response after peak load, the increase in both flexural
strength and fracture energy proves beneficial.

~— Ductile failure
Strain hardening Brittle failure

Flexural stress (MPa)

—(/77 Fracture Encrgy

0 -
Strain (%)

Figure 2, Stress strain curve of FR3DPC [19]

[18] showed that specimen’s failure with fiber reinforcement, compared to one
without reinforcement, was no longer primarily due to the weak interface creat-
ed by 3D printing. Pham et al. [4] highlighted that fiber orientation, critical length
and volume fraction are key factors in enhancing flexural performance via fiber
bridging. Volume fraction refers to the amount of fibers added to a concrete mix,
expressed as a percentage of the total volume of the composite. In case of FR3D-
PC, it usually ranges from 0,1% to 3% [20]. During the extrusion process, fibers
tend to align with the path of the filament because of the constrained size and
flow direction of the filament. This preferential alignment in printed materials
leads to pronounced anisotropic mechanical behavior. Regarding the fiber ori-
entation, maximum performance is reached with fibers oriented perpendicular
to the compressive load direction [21] because fiber resistance is based on pull-
out behavior rather than yielding, as is the case with traditional rebars. In [18]
authors demonstrated that post-peak performance was directly related to fiber
length. In contrast, shorter fibers are less effective due to limited bonding and
a lower probability of intersecting cracks. It is important to note that although
longer fibers improve post-peak behavior, they also impose higher requirements
on the printer's mixing process and the design of the print head.
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Fibers can be generally categorized as rigid or flexible depending on their elastic
modulus and aspect ratio where flexible fibers have a higher aspect ratio com-
pared to rigid ones [22]. Flexible fibers, such as polypropylene (PP) have a low-
er modulus than the cement-based matrix and they tend to break under stress
transfer. Polyethylene (PE) fibers have superior tensile strength and are hydro-
phobic, compared to the commonly used polyvinyl alcohol (PVA) fibers. The hy-
drophobic nature of PE fibers reduces fiber-matrix chemical bonding, significant-
ly increasing the complementary energy during fiber bridging [23]. Rigid fibers,
like steel fibers, have higher modulus than cement matrix and are successful in
shifting stress from the matrix to the fiber which enhances compressive strength
by means of fiber pull-out [19]. In the following table, a review of investigative
studies on the effect of different types of fibers on mechanical properties is giv-
en. All values are representative for testing load direction perpendicular to the
printing path, hence fiber orientation (Z direction). Increase (+) or decrease (-) of
flexural and compressive strength in comparison to non-reinforced specimen is

presented if data was available.

Table 1. Effect on mechanical properties of various fiber types

. . Flexural strength Compressive strength
Reference Fibers Volume fraction (%) (MPa) (MPa)
1 15.6 39.8
[23] *PE 1.5 19.4 446
2 14.5 47.3
flax 1 9 (+30%) 48 (+6%)
[24]
carbon 1 8.1 (+17%) 39 (-14%)
0.25 5.97 (+87%)
0.5 4.94 (+54%)
[18] PE
1 9.53 (+200%)
1.4 10.29 (+220%)
0.25 4.05 24
0.5 4.6 22
[25] glass
0.75 5 23
1 5.82 22.74
basalt 1 13.8 (+30%) 33.7 (+13%)
[26] carbon 1 29.1 (+175%) 27.4 (-8%)
glass 1 12.4 (+17%) 20.6 (-30%)
0.25 7.8 (+2.6%) 35.8 (+60%)
0.5 71(-7% 34.3 (+53%
[27] PP S 531
0.75 6.1 (-20%) 25.9 (+13%)
1 7.5(-1.3%) 18.2 (-18%)
[28] steel 2.1 5.96 (+422%)
1 5.17 (-5%) 37.66 (-2.5%)
[29] PVA
1.5 4,91 (-8%) 29.95 (-22%)
*UHDC - ultra high ductility concrete
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3 Conclusion

The ability of 3D printing to create low cost and architecturally complex housing
could greatly accelerate the widespread use of 3D printing in commercial con-
struction. It is expected that the mechanical properties of printed components
are at least comparable to those of parts produced by conventional techniques.
Anisotropic behavior, introduced by extrusion-based technique of 3DPC, as well
as application of standardized, continuous, two-directional reinforcement pre-
sents a major challenge in achieving load-bearing behavior of conventional rein-
forced concrete. This paper examines the strengths and weaknesses of different
reinforcement techniques. Current reinforcing strategies are limited to low-rise
buildings and low design forces, because they eighter don't meet design reg-
ulations, are too expensive or limit the full benefits of 3D printing technology,
like speed and automatization. Strategy with most potential, in authors’ opinion,
is prestressed reinforcement and fiber reinforcement. Further research should
focus on improving these strategies, possibly with “smart” reinforcement mate-
rials to back-up smart technology of 3D printing. One proposal is shape memory
alloy, material developed just recently, having unique properties, such as super-
elasticity and shape memory effect. Such a materials could enhance durability
of concrete structures due to their ability of crack recovery, self-centering and
strength enhancement.
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